

Innovative Hydrogen Liquefaction Cycle

Martin A Shimko Project # PD21 2008 DOE Merit Review Gas Equipment Engineering Corporation June 11, 2008

This presentation does not contain any proprietary, confidential, or otherwise restricted information

H2 Liquefier Development Program

GEECO:

Avalence:

MIT:

Timeline

Restart Date: Jan 2007 End Date: Sept 2011 Percent Complete: 30%

Barrier Addressed

High Cost and Low Efficiency of Hydrogen Liquefaction

Budget

Project Funding: \$2.52M DOE: \$2.00M \$0.52M Contractor: \$161K Received in FY06 \$394K Received in FY07 \$700K Allocated for FY08

Partners

Detailed Design Liquefier Fabrication System Testing System Integration Cycle Design Catalytic HXC Design **R&D Dynamic:** TBX Design and Fab

Refined Project Objectives

- Design a Practical H2 Liquefaction Cycle That Significantly Increase Efficiencies Over Existing Technologies
- Produce a small-scale (100 500 kg/day) hardware demonstration of a hydrogen liquefaction plant
- Use Low/No Risk Development Components That Scale to 50,000 kg/day Plant Size
- Document a Significant Reduction in the Total Cost of H2 Liquefaction at the 50,000 kg/day Production Level

Revised to:

➢Reflect Project Restart in Jan '07

- Limited Component Development and Demonstration Phase Consistent with FY '08 Funding
- Complete Component Development and Produce Full Pilot Plant Demonstration if Future Funds Allocated

PROJECT TIME LINE	Calendar Year Quarter																		
	Q1 07	Q2 07	Q3 07	Q4 07	Q1 08	Q2 08	Q3 08	Q4 08	Q1 09	Q2 09	Q3 09	Q4 09	Q1 10	Q2 10	Q3 10	Q4 10	Q1 11	Q2 11	Q3 11
Cycle Design																			
Equipment Specification and System Design																			
Develop Catalytic Heat Exchangers																			
Develop Turbo Expanders																			
Develop Hydraulic Expander																			
Procure Major Components																			
Build Demonstration Plant																			
Test Demonstration Plant																			

Technology Background

- Present "State of the Art" Operates at ~30 to 35% of Carnot Efficiency (Linde)
 Achieve 9.7 kWh/kg Results (per H2A program)
 Use Joule-Thompson Expansion Valves For Coldest Temperature Cooling Stage
- Work by Quack (2002) Claims a "Practical"
 Limit of About 60% of Carnot
 Multiple Cooling Loops/Fluid → Very High Cost
- MIT Has He Liquefier Experience Using Hydraulic Expanders
 - ✤Piston Driven Hydraulic Motor
- Efficient He Based Cryogenic Expanders Exist
- Developing H₂ Expanders For Lowest Temperature Stage Is Problematic

Present State of the Art H₂ liquefaction - Claude cycle

"First Year" Project Work

Challenged Historical Technology "Wisdom" Found H2 Para/Ortho Equations of State Developed "Simple" Cycle Simulation Program >Investigated Several Cycle Options Selected and "Optimized" Innovative Cycle Estimated System Efficiency and Cost \$500 kg/day Pilot Plant (hardware demonstration) \$50,000 kg/day Commercial Plant Identified Required Component Development

- Developed MATLAB Program with Excel Spreadsheet Utilizing the Latest H2 State Properties from NIST
- Cycle was Simulated with Combinations of the Following:
 - Turbine Adiabatic Efficiency: 80%, 90%
 - *****Heat Exchanger Pinch Point $\Delta T/T$: 1 to 5%
 - Hydrogen Pressure: 15 bar, 20 bar, 25 bar
 - Helium Pressure Ratio: 5, 6, 7
 - Compressor Efficiencies: 65 to 85%

Increasing Pressure Reduces the Cooling Load at Low Temperature

T-S Diagram For Normal Hydrogen

Pressures Above 15 bar Enable the Use of Wet Expander For 100% Liquefaction Conversion

Assumptions η for large plant: expanders: $[\eta_{1a}=0.82, \eta_{1b}=0.83,$ $\eta_2 = 0.83, \eta_3 = 0.86,$ η₄=0.86] He compressor: η_{comp} = 0.80 H_2 compressor: η_{comp} = 0.60

Main Features of Selected Approach

- ➢Once-Through H₂ Liquefaction 100% Yield
- Collins-Style Cycle with He as Refrigeration Loop Working Fluid
- ≻Constant, Supercritical Pressure in H₂
- Components Use Established Technology and Facilitate Scalability
- Efficiency Through Effective Staging of Expanders
- Development of Catalytic Heat Exchangers Would Further Increase Efficiency and Lower Cost

efier Perfor	mance	Pilot	Large		
	ΔΤ/Τ	0.03	0.03		
	η _{exp1}	0.6	0.85		
	η _{exp2}	0.7	0.83		
	η _{exp3}	0.75	0.86		
	η _{exp4}	0.65	0.86		
system rameters	$\eta_{\text{comp,He}}$	0.65	0.8		
	$\eta_{comp,H2}$	0.6	0.8		
	$\eta_{wet_expander}$	0.9	0.9		
	P _{H2} [bar]	21	21		
	P _{He,high} [bar]	15	15		
	P _{He,low} [bar]	2.5	2.5		
	T _{atm} [K]	300	300		
ronmental nd final operties	P _{atm} [bar]	1	1		
	X _{para,in} [-]	0.25	0.25		
	T _f [K]	20	20		
	P _f [bar]	1	1		
	X _{para,f} [-]	0.95	0.95		
nulation	η_{cycle}	0.2214	0.4455		
nulation result	W _{ideal} [kWh/kg]	3.89	3.89		
	W _{net} [kWh/kg]	17.57	8.73		

Шт

R & D Dynamics Phase I Work

- Selection of Turbo-Alternators for Efficient Operation
- Preliminary Design of Turbo Equipment
 - ➢Pilot Plant at 500 kg/day
 - ➢Commercial Plant at 50,000 kg/day
- ➢ Pairings of Stage 1 and 3 and Stage 2 and 4 on Common Shafts

Estimate Cost of the Commercial Sized Turbo Equipment

Pilot Plant Design

12 FT

12 FT

Equipment Cost Estimate

TOTAL:		\$2,680,000.00		\$39,106,000.00	P
Miscellaneous		\$100,000.00		\$500,000.00]2(
Electric Switchgear		\$100,000.00		\$500,000.00	
Structures		\$10,000.00		\$200,000.00	Δ
Insulation		\$10,000.00		\$150,000.00	
Piping		\$10,000.00		\$250,000.00	
H2 Expander	1	\$25,000.00	1	\$125,000.00	
Instrument Air Supply	1	\$5,000.00	1	\$10,000.00	
Control System	1	\$75,000.00	1	\$100,000.00	
Check Valves	13	\$25,000.00	13	\$130,000.00	_
Control Valves	4	\$6,000.00	5	\$75,000.00	-
TBX 4	1	\$150,000.00	1	\$250,000.00	_
TBX 3	1	\$150,000.00	1	\$250,000.00	-
TBX 2	1	\$150.000.00	1	\$250,000.00	-
TBX 1	1	\$150,000,00	1+1	\$350,000,00	_
Catalyst Bed	6	\$6,000,00	6	\$120,000.00	-
HX 8	1	\$31,000,00	1	\$136,000,00	-
НХ 74	1	\$33,000,00	1	\$104,000,00	-
HX 6 7	1	\$35,000.00	1	\$130,000.00	_
ПА 4-3 ЦУ 5 А	1	\$07,000.00	4	\$1,322,000.00	-
HX 3A	l	\$37,000.00		\$183,000.00	_
HX 1-2-3	l	\$160,000.00	10	\$4,084,000.00	_
Compressor, He	1	\$900,000.00	10	\$24,000,000.00	_
			1		

Already Meets 2012 DOE Goals For 30,000 kg/day Plant

>INCREASES EFFICIENCY BY 30% OVER PRESENT STATE-OF-THE-ART

- ≻From 30% TO 44% OF CARNOT, or
- From 9.7 kWh/kg to 7.4 kWh/kg

>SYSTEM "EQUIPMENT" COST ~40% OF H2A ESTIMATE

- TEC Could Be Significantly Higher, But Also Not Included In H2A Model
- Largely Conventional Component Use
- Development Risk and Cost Uncertainty Minimized

Summary of Economic Estimates

Based on Liquefying 15.9M kg Annually and Amortizing CapEx Over 7 years

	DOE H2A	Project
	Model Results	Estimates
Liquefier Capital Cost	\$102.3M	\$39.1M
Annual Energy Cost (\$0.05/kWh)	\$9.5M	\$7.1M
O&M plus Misc Annual Costs	\$5.1M	\$5.1M
Capital Cost Contribution to the Liquefier Share of Real		
Levelized Delivered Hydrogen Cost (\$(2005)/kg)	\$1.08	\$0.42
Energy/Fuel Cost Contribution to the Liquefier Share of		
Real Levelized Delivered Hydrogen Cost (\$(2005)/kg)	\$0.60	\$0.45
Other Cost Contribution to the Liquefier Share of Real		
Levelized Delivered Hydrogen Cost (\$(2005)/kg)	\$0.32	\$0.32
Liquefier Portion of Real Levelized Delivered Hydrogen		
Cost (\$(2005)/kg)	\$2.00	\$1.19

Requiring Some Level of Development

Catalytic Heat Exchangers Increased Cycle Efficiency Reduced Equipment Cost >Centrifugal H2 Wet Expander Achieve "Commercial" Reliability He Turbo-Alternator Detailed Design and Testing to Achieve **High Efficiency and Low Cost**

<u>Consistent With Available Funding For</u> <u>Project and Specifically The Next 18 Months</u>

Full Pilot Plant Fabrication and Testing ≻Far Exceeds Initial Proposal Estimate

\$4.5M

Key Component Development
➢ Develop and Demonstrate a Catalytic Heat
\$545K
Exchanger

Catalytic Heat Exchanger Evolution

Adiabatic Catalyst Beds Isothermal Catalyst Bed (Used in Performance Model)

Continuous Catalytic Heat Exchanger

Pilot Plant		
Performance		W net
Simuation	η cycle	(kWh/kg)
Adiabatic Catalyst Beds	19.76	19.69
lsothermal Catalyst Beds	22.14	17.57
Continuous Catalytic Heat Exchangers	23.33	16.67

Year II

Develop and Demonstrate a Catalytic Heat Exchanger

>MIT

Develop Catalytic Heat Exchanger Design

Bench Top Testing

>GEECO

- Heat Exchanger Fabrication
- Test Facility Fabrication
- Prototype Testing

Possible Test Loop for Catalytic Heat Exchanger Demonstration Testing

