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Overview

• Start: Date 8/2005
• Project end March 

2011(tentative)
• 30% Complete
• Funding delayed FY’06

• Barriers addressed
E. Solid and Liquid Carrier Transport
A. Hydrogen/Carrier and 

Infrastructure Options Analysis
F. Hydrogen Delivery Infrastructure 

Cost

• Total project $4,131,138
– DOE share (75%)
– Contractor share (25%)

• Funding received in 
FY07:$900,000

• Funding for FY08 $834,583

Timeline

Budget

Barriers

• Pacific Northwest National 
Laboratory/Battelle

• United Technologies Research 
Corporation (UTRC)

• OEM (to be finalized)

Partners
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Objectives

• Enable Liquid Carrier concept 
– Prototype dehydrogenation reactor
– Economic study to determine concept’s viability
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Approach

• Overall Tasks
1. Develop a conceptual 

design and fabricate 
a laboratory
prototype 
dehydrogenation 
reactor/heat 
exchange system to 
deliver H2

2. Study of economics 
of H2 liquid carrier
delivery

• Reactor Design 
– Measure performance of 

packed bed reactor
– Devise advanced reactor 

designs
• APCI single channel
• PNNL multichannel

– OEM partner and UTRC 
integration

– Choose final design
– Build and test prototype

• Perform the economic 
study
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Milestones

Month/Year
Milestone or Go/No-Go 
Decision

18 months after start 
of microchannel 
reactor work
Original:June-07

Go/No-Go decision: Reactor 
Configuration for prototype 
reactor.

May-07 Milestone: Complete 
Economic Study
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Dehydrogenation Reactor
Challenges

• Gas flow rate large and variable 
– 50 KW  ~1 gm/min. H2, 11.2 Std Liters/sec.
– 1 liter of liquid generates 600 L of gas at 

complete conversion
– Demand varies

• Carrier molecule large relative to pore size
• Heat Load Significant (~6 Kcal/min.)

– Waste heat from Fuel Cell limits ΔT (mobile)
• Mass transfer is desorption--normal 

correlations may not be usual
• Experimental Program needed 
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Packed Bed Reactor Performance
• N-Ethylcarbazole/Pd 

model system
– Modest Productivity 

• 220 oC- 0.8 l/min. 60 cc 
(2.5 gm Pd, 60%)

– Simple separation of 
hydrogen with quality 
potentially adequate for FC 

– Hydrogen purity sustained  
over ~15 cycles Pd catalyst

– Stability of catalyst and 
liquid demonstrated over 
>400 hours in reactor 
(many years of use in car)

Dehydrogenation Flow Reactor
Test SystemConclusion: Packed bed reactor system possible
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Flow and Mass Transfer Limits 

• Modest increases in 
hydrogen flow rates 
decreases productivity. 

• Low Effectiveness 
Factor (using kinetic 
model as baseline) 
– ή = 0.08 measured
– ή = 0.1 correlations
– Pellet diameter (2 

mm) limits diffusion
• Conclusion: Packed 

bed reactor system 
will be inefficient.
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Advanced Designs-Monolith
Thin Film Catalyst Development

• FeCrAlloy substrate (50 μ) 
coated with catalyst gives 
thin catalyst film (25 μ)

• Good Productivity (~0.15 gm 
Pt) using continuous reactor
– 0.8 l/min, @ 250 oC 65% 

conversion
– 85% conversion with 2 

passes
• Selectivity

– Pd gives same high 
selectivity >99% as packed 
bed reactor

• Conclusion: Thin film 
catalyst can be effective.



10

Thin Film Catalyst Efficiency

• Slurry reactor measures 
intrinsic catalyst activity

• CatRak measures thin 
film catalyst activity

• Model relates intrinsic 
activity to wash coat

• Conclusion: High 
catalyst efficiency 
demonstrated but mass 
transfer limits 
conversion
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Monoliths in Continuous Flow 
Reactor 

• Flow Fluctuations Found
– Thermocouples showed temperature fluctuations 

which can only be explained flow instabilities.
– Increasing gas flow decreased conversion indicating 

flow irregularities
• Very recent literature indicates microchannel 

flow instability caused by generation of large 
flow gas at wall.

• Thus, feeding monolith in tube can give stability 
problems and fluctuations in conversion from 
channel-to-channel for dehydration.
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Microchannel Reactor 
Rationale

• Uses effective thin–film 
catalyst

• High rate heat transfer 
possible 

• Large number of identical 
channels allows
– Mass production of large 

number of reactors for 
filling stations or 
automobiles 

– Accommodation of varying 
demand and complete 
conversion  turning on 
desired number of reactors 
to meet demand 
requirement

Battelle 50 kW  combustor-gasoline vaporizer.  
Full size unit, ~ 13 cm at longest dimension
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Flow Characteristics of Single 
Channel

• CFD Simulations 
– Liquid simulation shows 

slow flow at corners of 
triangular tubes

– Adding H2 from walls 
causing drying out of 
surface 

– Circular tubes give better 
flow, but catalyst could “dry 
out” at high gas flow rates.

• Conclusion: Multichannel 
microreactors could be 
viable but need design 
expertise for successful 
scaleup

Velocity vectors of N-ethylcarbazole at channel exit 

Contours of N-ethylcarbazole symmetry plane
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Initial Microchannel Reactor 
Results

• Reactor is isothermal
• Removing thermocouple changed flow pattern but gave 

same conversion.
Conclusion: Microchannel reactor remains

best candidate for prototype.

Microchannel Reactor Results. 
Reactor Temperature 250 0C 

 
Feed 
Rate 

H2 
Flow Conversion

 (ml/min) (sccm) (%) 
Annular Flow 0.10 11.35 18.85 
Channel Flow 0.10 10.59 17.61 

Restart after  14 days 0.10 9.67 16.07 
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Economics: System Overview

Distribution
Tanks

Collection
Tanks

Resid 
Utilization

Carrier
Make-up

Steam export

Fresh Carrier
Storage System

Steam

Hydrogen
Facility

H2 Catalytic
Reactor
System

VDU
System

Distribution &
Collection Network

Spent Carrier
Storage System

Distillate

Spent
Carrier
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Approach: Hydrogenation Economics

Process Inputs &
Assumption Definitions

Material & Energy Balance
Calculations (Aspen Plus™)

Capital and O&M Cost Analysis
(Aspen Icarus™)

H2A Model for 
Costing

• Three scales of hydrogenation throughput were analyzed
– 20 MMSCFD H2 and 5000 bpd of Product
– 100 MMSCFD H2 and 24000 bpd of Product
– 1000 MMSCFD H2 and 240,000 bpd of Product
– H2A Model used

Capital and O&M Cost Analysis
(Aspen Icarus™)



APCI Liquid Carrier Economics 
Summary

• Hydrogenation 0.86-2.5 $/kg
– Factors

• Carrier price
• Storage
• Carrier loss

• Distribution 0.14 $/Kg
• On-site Dehydrogenation 1.63 $/Kg

• Compression 0.86 $/Kg
• Storage 0.52 $/Kg
• Dispenser 0.04 $/Kg
• Balance of Station 0.21 $/Kg

• Projected Delivery Cost - $3.4/Kg. ($2.6-$4.3/KG)
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Economics: Onboard Upside
• On-board Dehydrogenation eliminates compression 

from 2 bar to 350 bar
– Potential to avoid 0.86 $/Kg in compression cost
– Will eliminate storage of high pressure H2 either on 

site or on board the FCV
– Direct supply of H2 from micro-channel reactor to 

fuel cell at 2 bar
• Needs

– Validation of design of Micro-channel reactor 
– Autothermal Hydrogen Carrier (STP 25)
– Understand the cost/possibility of heat integration 

between PEM fuel cell and micro-channel reactor
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Future Work/Milestones
FY ‘08-FY ’09

– Choose reactor configuration for prototype 
reactor

• Three candidate reactor to test principles
• Combine best features of each type

– Define characteristics/parameters for integration
• UTRC fuel cell
• OEM automobile

– Build required test facilities
1Q FY ‘10

– Decide on prototype design
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Summary
• This projects supports Liquid Carrier by developing 

a dehydrogenation reactor system for H2 delivery.
• Packed bed reactor works well, but design 

limitations limit reactor efficiency.
• Thin-film catalysts ( useful for monoliths and 

microchannel reactor ) can be made with high 
catalyst efficiency.

• Monolith reactors are useable, but flow instabilities 
will cause design limitations.

• Microchannel reactors still look like most viable 
alternative.
– Feed distribution system and channel size/shape 

parameters will have to be optimized 
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