Hybrid Sulfur Thermochemical Process Development

William A. Summers Savannah River National Laboratory June 12, 2008

> DOE Hydrogen Program 2008 Annual Merit Review **Project PD26**

This presentation does not contain any proprietary, confidential or otherwise restricted information

Overview

Timeline

- Start Date: June, 2004
- End Date: Sept, 2010
- 50% Complete

Budget

- Total Project Funding
 - DOE Share = \$3.9 M (thru FY08)
 - Industry Cost Share = \$140 K
- FY07 Funding = \$1400 K
- FY08 Funding = \$1000 K

Barriers

- U. High-temperature thermochemical technology
- V. High temperature robust materials
- NHI Objective By 2019, operate a nuclear hydrogen production plant to demonstrate technical feasibility and cost competitiveness

Partners

- Westinghouse Electric
- Giner Electrochemical (subcontract)
- Univ. of South Carolina (U-NERI)
- Sandia National Laboratory (membrane & acid system develop.)

Objectives

- The main focus of this project is to develop and demonstrate the Hybrid Sulfur thermochemical process as a viable option for large-scale hydrogen production using nuclear energy*
- FY08: Development and testing of an SO₂ depolarized electrolyzer (SDE) using PEM-type cell design
 - Optimize HyS process design, update flowsheet and perform cost analysis in conjunction with industry partner
 - Continue to identify and develop improved cell components to reduce sulfur crossover and increase cell efficiency
 - Conduct single cell SDE tests at elevated temperature and pressure
 - Install and test a multi-cell SDE with 100 lph hydrogen capacity

*Can also be driven by heat from central solar receiver system

Milestones

- Complete 100 hour single cell longevity test (5/15/07)
- Complete construction of multi-cell stack (9/15/07)
- FY08
 - Complete HyS flowsheet and process design (3/15/08)
 - Complete multi-cell stack testing (3/31/08)
 - Complete mid-year evaluation for membranes and electrocatalysts (5/15/08)
 - Complete Phase II single cell SDE testing (9/15/08)
 - Complete component development and issue report (9/15/08)

Complete
Complete
Complete
Complete
On Cabadula
On Schedule
On Schedule

Complete

FY08 Plan and Approach

Our approach is to analyze the overall Hybrid Sulfur process design and requirements and to perform development on the key new component, the SO_2 -depolarzied electrolyzer. We try to maximize use of results and experience from programs on PEM fuel cells and PEM electrolyzers.

•	HyS Process Design Optimization Collaboration with Westinghouse Electric Improved flowsheet and updated plant cost analysis 	90% Complete
•	 Component Characterization and Development Electrodes and electrocatalysts evaluations Membrane selection, testing and analysis (with partners) Assembly of single-cell membrane-electrode assemblies 	70% Complete
•	 Single-Cell Electrolyzer Testing Design, assemble and test single-cell electrolyzers Temperature, pressure and acid strength effects Bost-test examinations and analysis 	50% Complete
	Multi-cell Stack	100% Complete
Æ	 Modify test facility for larger stack testing Fully characterize multi-cell stack performance Post-test examinations and analysis 	

SBL

Hybrid Sulfur Process

The only 2-step, all-fluids thermochemical cycle – based on sulfur oxidation and reduction; only S-H-O compounds

Inputs:

SO₂-Depolarized Anode Significantly Reduces Electricity Needed to Electrolyze Water

Water electrolysis half-cell reactions:

$H_2O(I) \rightarrow \frac{1}{2}O_2(g) + 2 H^+ + 2 e^-$	anode reaction
2 H⁺ + 2 e⁻ → H₂(g)	cathode reaction
$H_2O(I) \rightarrow \frac{1}{2}O_2(g) + H_2(g)$	net reaction
Standard cell potential,	E° = -1.229 V at 25°C

SO₂-depolarized electrolysis half-cell reactions:

Improved Flowsheet Developed in Conjunction with Westinghouse Electric

Key design improvements:

- Optimized heat integration between reactor, hydrogen plant and bottoming cycle
- Improved thermal efficiency for HyS thru pinch analysis
- Increased hydrogen production per PBMR by over 150%
- Expected to have major impact on cost of hydrogen
- Final equipment sizing and cost estimates in process

Courtesy of W. Kreil, PBMR Ltd.

SRNL's PEM Concept for SO₂-Depolarized Electrolyzer

- SO₂ oxidized at anode to form H₂SO₄ and hydrogen ions
- Practical cell potential is 600 mV at 500 mA/cm2
- Requires efficient thermal step to regenerate SO₂ reactant
- PEM cell concept permits compact design, reduced footprint, and lower cost
- Leverages development for PEM fuel cells and water electrolyzers
- Current HyS flowsheets based on operation at 100°C and 20 bar with 50 wt% H₂SO₄

Electrolyzer Component Development Objectives

Proton Exchange Membrane

- Minimal SO₂ Transport
- Maximum ion conductivity
- Anode
 - Maximum SO₂ oxidation kinetics
 - Minimal attack by SO₂/H₂SO₄

Cathode

- Maximum hydrogen formation kinetics
- Minimal reaction with SO₂
- Flow Field/Diffusion Media
 - Maximize SO₂ transport to anode
 - Low pressure drop
 - Chemically and mechanically stable

Subscale Tests Used to Characterize Key Electrolyzer Components

- Glass electrolyzer unit used to measure SO2 transport thru membrane and MEA performance
- Catalyst evaluated in three electrode cell

Improved Membranes and Electrocatalysts being Developed

Testing has helped to characterize component performance and identify promising options

- Conventional Nafion membranes have good conductivity, but suffer from relatively high SO₂ transport
- Improvements of 5x versus Nafion achieved to date; new membranes sought with >10x
- Membranes for Direct Methanol Fuel Cells operating at higher temperatures appear attractive
- Platinum is the baseline electrocatalyst; Pt alloy catalysts show improved performance and excellent stability
- Palladium electrocatalyst rejected due to poor performance and instability

Membrane Test Results

Improving Reaction Kinetics has Biggest Impact on Cell Performance

0.2

0.18

0.16 0.14

0.12

0.1

0.06

0.04

0.02

resistance (V)

Potential loss due to Ohmic

P=1 atm

2 atm

ure membrane resista

Test results fitted with empirical equation (3 atm, 80C and 500 mA/cm²) Kinetics 78 % of overpotential Ohmic Losses 14 % Concen. Polar. 8 % Plan: Improved catalyst and higher operating temperature (100 - 120°C)

WSRC-MS-2008-00098

Single-cell Testing

Single Cell Test Results

Twenty-six different single cell units have been tested at up to 80°C and 6 bar. 100-hour longevity test completed. Current density up to 1100 mA/cm2 vs 500 mA/cm2 goal. Voltage at design point of 760 mV vs 600 mV goal. Higher temp and pressure plus improved catalysts expected to lower voltage.

Blue line – best ambient (MEA 14) Red line –

best at T&P (MEA 19)

100 Hour Longevity Test

Single Cell Test Results

Reduction of Sulfur Deposition is a Key Technical Objective

- SO₂ diffuses thru PEM
- Reduction at cathode can result in S deposits
- Certain designs and operating conditions avoid deposits
- Multiple approaches
 - Modify membrane
 - Modify operating conditions
 - Alternative cell design

MEA 9, N117 with Pt black catalyst

MEA 20, N115 with Pt/C catalyst

Multi-cell Stack Development

- Established partnership with Giner Electrochemical
- Leverages existing PEM water electrolyzer technology
- Maximizes use of existing components and hardware
- Incorporates SRNL experience with PEM-type SO₂ electrolysis
- Bi-polar 3-cell stack using round plates with 160 cm² active area per cell
- Rated capacity is 100 lph of hydrogen production under SO₂-depolarized conditions

Multi-Cell Stack Testing Completed

- Level 1 Milestone Completed on 3/26/08 (ahead of schedule)
- Demonstrates 8x scale-up and multi-cell stack capability
- Key step leading to larger scale demonstration plant

Future Work

• FY08

- Continue component development of improved cell membranes and electrocatalysts; select design for integrated lab-scale test
- Characterize promising components in single cell tests
- Verify solution to sulfur crossover issue
- Continue work with industry, lab and university partners on alternative cell design approaches

• FY09:

- Continue electrolyzer development; identify optimum membrane; extend operation to more severe conditions; scale-up to larger capacities
- Modify test facility for higher temp operation (>100°C)
- Run single cell tests at higher temp and for extended time (>1000 hour)
- Design and build an Integrated Lab-Scale Experiment of HyS, including high temperature acid decomposition and SO₂/O₂ separation

Summary

- Relevance HyS Process combined with advanced nuclear reactors (or solar receiver) can be an important hydrogen production option
- Approach Develop PEM-based SO₂-depolarized electrolyzer and combine with acid decomposition system from SI project. Maintain balanced program including cell development and system testing.
- Technical Accomplishments Key cell components defined; longevity test completed; multi-cell stack demonstrated; high efficiency HyS flowsheet completed
- Technology transfer/collaborations Active partnership with Westinghouse on plant design; partnership with Giner on electrolyzer manufacture; collaborations with USC, SNL and several other university partners
- Future Work Complete electrolyzer development and scale-up; demonstrate complete cycle in an integrated lab-scale experiment

