

... for a brighter future

Part II. R&D Status for the Cu-Cl Thermochemical Cycle

Michele Lewis Argonne National Laboratory June 12, 2008

PD28

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

U.S. Department of Energy

UChicago ► Argonne_{uc}

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Overview

<u>Time Line</u>

- Start date: 6/06 (Part 1)
- Start date: 10/07 (Part 2)
- End date: 09/10
- % complete: 30%

<u>Budget</u>

- \$1.3M for Phase 1
 - Mostly university support
- \$250K for FY08 for Part 2
- Complementary program supported by DOE-EERE
 - \$939K from FY06 to FY09

Barriers

- G. Capital Cost
- H. Efficiency
- AU. High temperature thermochemical technology

Partners

- International Nuclear Energy Research Initiative (INERI)
- Nuclear Energy Research Initiative-Consortium (NERI-C)

Objectives

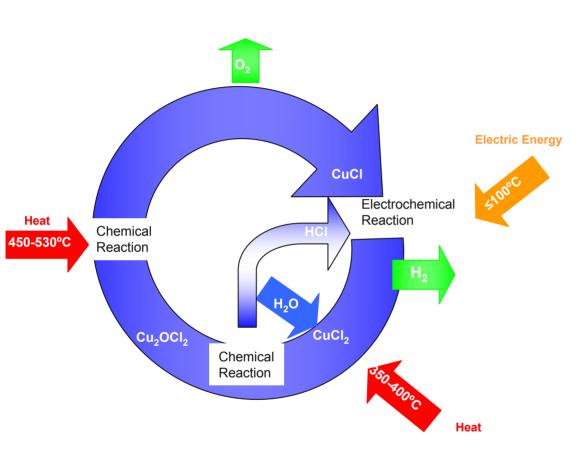
- Develop a <u>commercially viable</u> process for producing hydrogen based on a thermochemical cycle that meets DOE cost and efficiency targets
- Coordinate university evaluation of alternative cycles considered in the literature as promising and down select to most promising cycle
 - Selection criteria were chemical viability, engineering feasibility, projected efficiency and hydrogen production cost, and DOE-NE's time line for an integrated laboratory-scale demonstration (ILS)

Cu-Cl Cycle down selected based on knowledge in 8-07

Cycle	Chemical Viability	Engineering Feasibility	Cost and/or Efficiency	DOE's Timeline
Hybrid Cu-SO₄	No —competing product forms	?	?	Νο
Mg-I	No—HI _x decomposition/ separations	No—too complex	?	Νο
Active Metal Alloy	?	Yes— simple	Low efficiency, but low cost	?
Hybrid Cl ₂	?	?	Possible	No
V-CI	No—slow kinetics	?	?	No
Hybrid Ca-Br	?	Yes	?	No
Hybrid Cu-Cl	Yes	Yes	Yes	Yes

Some cycles have significant merit but insufficient data available when down selection occurred.

Milestones due 9/30/08


Complete down selection process

- CuCl selected for the following reasons:
 - Proof of principle complete, no showstoppers identified
 - Low maximum temperature, 550C in lab-scale tests
 - Projected efficiency and H2 production costs within DOE targets
 - International support
- K-Bi cycle selected as part of NERI-C
 - Proof-of-concept work ongoing
- Define optimum operating conditions and reactor designs for Cu-Cl thermochemical cycle but focus on an engineering lab-scale reactor for the <u>hydrolysis</u> reaction

Coordinate activities with partners in INERI and NERI-C to develop robust hydrogen production process

Approach

Experimental program

- Focus on hydrolysis reaction
- Scale-up to an engineering lab-scale reactor
- Feed results to model

Modeling program

- Supported by DOE-EERE
 - Developed flowsheet
 - Estimated efficiency and capital costs
 - Used H2A analysis for H₂ production costs
 - Optimization ongoing
- Guide expt. program

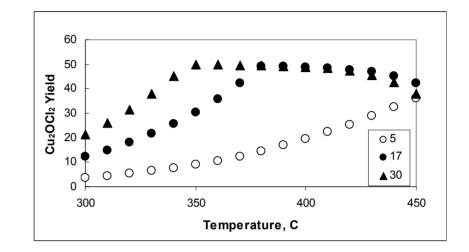
Three major reactions in the Cu-Cl cycle

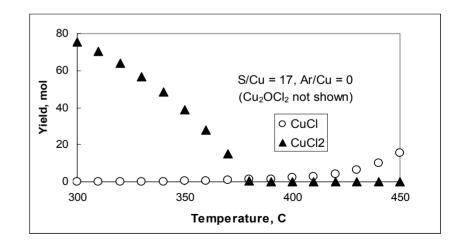
Hydrolysis reactor

- $\blacksquare 2CuCl_2 + H_2O \Leftrightarrow Cu_2OCl_2 + 2HCl$
 - Tested 4 reactor designs
 - Fixed bed
 - Fluidized bed
 - Rotary
 - Nebulizer

Oxychloride decomposer

- $\square Cu_2OCI_2 \Leftrightarrow 2CuCI + \frac{1}{2}O_2$
 - Completed proof-of-concept work shows reaction is a relatively simple thermal decomposition


- Electrolysis
- $\blacksquare 2CuCl + 2HCl \Leftrightarrow 2CuCl_2 + H_2$
 - 2Cu(+1) ⇔ 2Cu(+2) + 2e(-)
 - $2H(+1) ⇔ H_2$
 - Proof-of-concept work completed at AECL
 - Optimization ongoing



Hydrolysis reaction, $2CuCl_2 + H_2O \Leftrightarrow Cu_2OCl_2 + 2HCl$, is primary focus

Two challenges identified

- Need for <u>excess water</u> shown by model and in experiments
 - Steam to CuCl₂ ratio required is >14, not ½ as shown by stoichiometry
- Expensive to handle and heat
- Parasitic reaction,
 2CuCl₂ ⇔ 2CuCl + 2Cl₂,
 observed in experiments but predicted to a lesser extent by model
 - 8-27% wt % CuCl in products experimentally
 - 1-2 wt% predicted in model

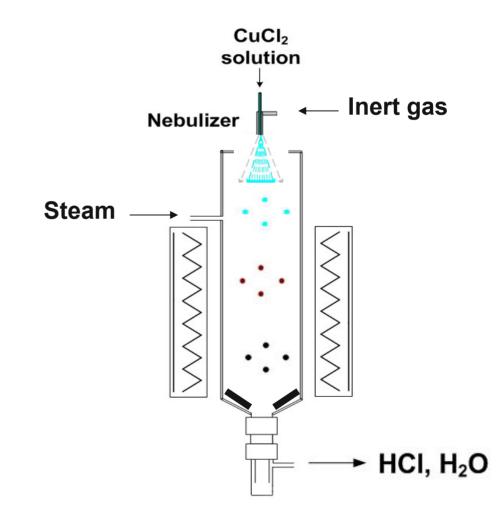
Fixed bed reactor provides poor mass and heat transfer

- Desired product formed at top and along the edge of the fixed bed
- High GHSV* provides needed mass transfer to obtain high yields of desired Cu₂OCl₂ and high steam to copper provides sufficient moisture
- CuCl formation increases with higher temperatures, longer test durations, higher carrier gas flow rates and lower steam to copper molar ratios

Steam/Cu	Time	GHSV*	H ₂ O vapor	Cu ₂ OCl ₂	CuCl
Molar ratio	(min)	(h₁)	(%)	(wt%)	(wt%)
28	60	43327	8	87	12
52	30	43135	26	89	8
17	60	8900	26	48	27
17	60	26000	8	66	17

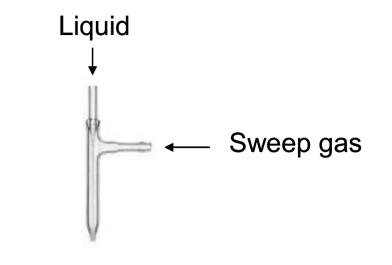
*GHSV = gas hourly space velocity

Fluidized bed reactor favors parasitic reaction, $2CuCl_2 \Leftrightarrow 2CuCl + 2Cl_2$


High flow rate for carrier gas required for fluidization

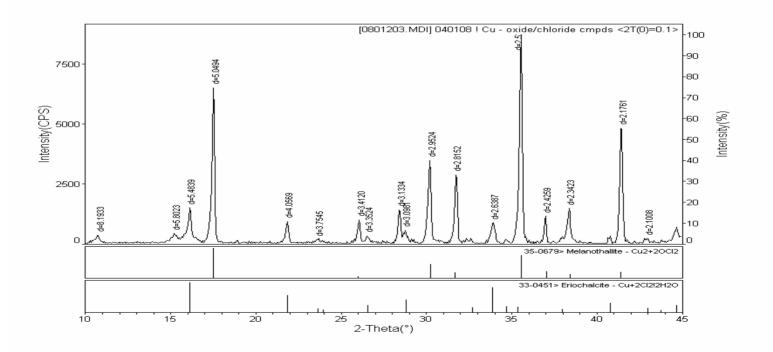
- CuCl formed to a greater extent with high carrier (fluidization) gas flow rates
- Products were not fluidized

New reactor design needed to provide high mass and heat transfer and short residence times


- Nebulizer reactor offers improved mass and heat transfer compared to fixed bed
- Small droplets of CuCl₂ (blue) solution are dehydrated
- Very small particles of CuCl₂ (brown) react with steam
- Very fine particles of Cu₂OCl₂ (black) are formed and fall to the bottom of the reactor to an unheated zone

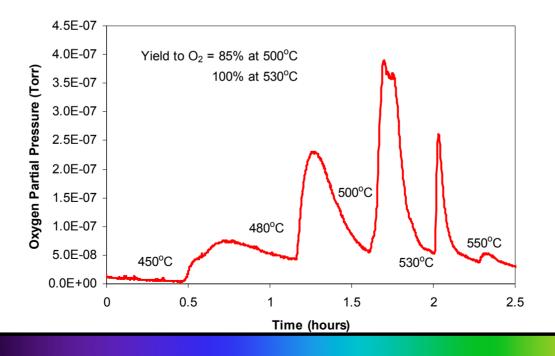
Nebulizer reactor

- Similar to spray reactor adapted for use in the laboratory
- Use nebulizer to obtain spray
 - Finest capillary in commercially available nebulizer gives 3 inch diameter cone about 3 inch from tip of nebulizer
 - Nebulizer must be kept 'cool' to prevent dehydration of solution in capillary
 - Solid CuCl₂ plugs capillary
- New furnace has a 5 inch ID and contains 3-12 inch heating zones
- New reactor is glass and is 5 feet long



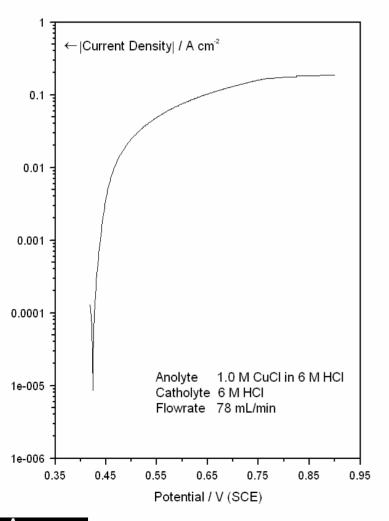
Key hydrolysis reaction just demonstrated at engineering lab-scale: CuCl₂ + H₂O = Cu₂OCl₂ +HCl

Cu₂OCl₂ and minor amounts of unreacted CuCl₂ identified from XRD
 Experimental variables being optimized for highest yields of Cu₂OCl₂


Question remains on whether CuCl was formed

Oxychloride decomposer: $Cu_2OCI_2 = 2CuCI + \frac{1}{2}O_2$

- The reaction has been validated with off-the-shelf and recycled (Cu₂OCl₂) materials (Supported by LDRD funds)
- O₂ yield 100% at 530°C; only O₂ detected on the mass spec no apparent side reactions
- Kinetic data measured



Atomic Energy of Canada, Ltd.

Single-Cell CuCl/HCl Electrolysis

- At 20°C and a cell voltage of 0.645 V a current density of 100 mA/cm² is observed
 - Goal is 0.5 V and 500 mA/cm²
- The current density is limited by mass transfer effects
- Current densities of 300 mA/cm² should be achievable
 - Once mass transfer effects are eliminated through careful cell design
 - At higher temperatures

Expertise/contributions from NERI-C partners

- NERI-C partners: Penn State, University of South Carolina, and Tulane University: \$2.4 M over 3 years
 - Develop characterization methods for Cl⁻ conductive membranes
 - Develop new Cl⁻ conductive membranes
 - Develop electrocatalysts for the electrodes for the Cu-Cl electrolyzer
 - Determine speciation and thermodynamic properties of important species in the CuCl-CuCl₂-HCl-H₂O electrolysis cell
 - Determine concepts to improve the operability of the process
 - Utilize years of engineering know-how
 - Develop separation methods as needed
 - Electrodialysis
 - Breaking HCl azeotrope

Expertise/contributions from INERI partner

- INERI partner (Atomic Energy of Canada Limited)
- AECL provided seed money to 4 Canadian universities who obtained \$5M grant to study Cu-Cl cycle
 - Develop concepts to improve the operability of the process and other modeling activities
 - Direct cooling of molten salt
 - Measure needed thermodynamics properties of important species in the CuCl-CuCl₂-HCl-H₂O electrolysis cell
 - Develop membrane electrode assemblies
 - Complementary to NERI-C work
 - Develop lab-scale engineering equipment
 - Develop control systems and risk analysis
 - Identify and test possible materials of construction

Preliminary capital cost and H2A analysis results

125,000 kg of hydrogen /day

	2015	2025	2017 Target
Capital, \$MM			
-Solar (Sandia)	223.4	183.2	
-Chemical Plant	134.2	77.3	
Utilities, MW	92	82	
Efficiency, % (LHV)	40	42	> 35
Cost of Hydrogen, \$/kg	4.38	3.01	3.00

Assumptions:

2005 \$, CEPCI = 468 Electrolyzer performance: 0.5 volts and 500 mA/cm² Electrode cost -- \$2500/m² Porcelain coated carbon steel at a 6% cost increase Crystallizer operability

Future work

FY08

- Continue development of hydrolysis reactor
 - Understand effect of experimental parameters
 - Optimize performance
 - Measure kinetics of hydrolysis reaction using HCI formation

FY09

- Couple hydrolysis and oxychloride decomposition reactors for integrated laboratory demonstration (ILS)
- Determine need for separations using both experimental and modeling approaches

Summary

- Engineering lab-scale hydrolysis reactor demonstrated—spraytype reactor provides necessary heat and mass transfer
- AECL has promising results for the electrolyzer's operation but further improvement is needed
- NERI-C and INERI partners are providing new concepts for improving operability of the process, increasing efficiency, and decreasing capital costs
 - Development and characterization of chloride ion conductive membranes, measurement of needed thermodynamic parameters to optimize electrolyzer performance
- Projected H₂ production cost and process efficiency meet DOE targets

