gti

One Step Biomass Gas Reforming-Shift Separation Membrane Reactor

Michael Roberts¹, Jerry Lin², Bryan Morreale³, Mark Davis⁴, and Brett Krueger⁵

¹Gas Technology Institute
²Arizona State University
³National Energy Technology Laboratory
⁴Schott North America
⁵Wah Chang (an Allegheny Company)

June 9-13, 2008 2008 DOE Hydrogen Program Review Project ID PD30

This presentation does not contain any proprietary or confidential information

Overview

Timeline

- > Start: 02/01/2007
- > End: 06/30/2011
- > Percent complete: 22%

Budget

- > Total project funding: –DOE share:
 - -Contractors share:

- \$3,396,186 \$2,716,949 \$679,237
- > Funding received in FY07: \$676,403
- > Funding for FY08:

\$544,152 planned \$0 to date

Overview (con't)

Barriers

>Hydrogen Production from Biomass Barriers

G. Efficiency of Gasification, Pyrolysis, and Reforming Technology I. Impurities N. Hydrogen Selectivity O. Operating Temperature P. Flux

>DOE Technical Targets

- $2-3/kg H_2$ from biomass delivered target
- $1.60/kg H_2$ from biomass without delivery

Partners

>Arizona State University

- >National Energy Technology Laboratory
- >Schott North America
- >Wah Chang, an Allegheny Technology Company

Objectives

Long-term goal:

Determine the technical and economic feasibility of using the gasification membrane reactor to produce hydrogen from biomass

First-year goal:

Select an initial candidate membrane material that can be fabricated into a module for testing with the bench scale gasifier by evaluating ceramic, metallic, composite, and glass ceramic membranes

Biomass Gasifier with Internal or Close-Coupled Membrane

gti

Potential Benefits of Membrane Reactor for

Hydrogen Production from Biomass

- > High H₂ production efficiency:
 - Thermodynamic analysis indicates potentially over 40% improvement in H₂ production efficiency over the current gasification technologies

Eliminate loss in PSA tail gas	
More CO shift	$H_2O+CO = CO_2+H_2$
Reform CH₄	$CH_4 + H_2O = CO + 3H_2$

- > Low cost:
 - reduce/eliminate downstream processing steps

> Clean product:

- no further conditioning needed, pure hydrogen
- > CO₂ sequestration ready:
 - simplify CO₂ capture process
- > Power co-generation:
 - utilization of non-permeable syngas

Scope of Work

> Task 1. Membrane material development

- 1.1 Ceramic material synthesis & testing ASU
- 1.2 Metallic material synthesis & testing DOE-NETL
- 1.3 Composite membrane synthesis & testing SCHOTT and GTI
- 1.4 Optimization of selected candidate membranes
- > Task 2. Gasification membrane reactor process development and economic analysis
- > Task 3. Bench-scale biomass gasifier design and construction

Scope of Work (con't)

- > Task 4. Integrated testing of initial membrane with gasifier
 - 4.1 Design of membrane module configuration
 Wah Chang assistance
 - 4.2 Membrane module fabrication Wah Chang
 - 4.3 Testing of bench-scale membrane reactor
- > Task 5. Integrated testing of best candidate membrane with gasifier
- > Task 6. Project Management and reporting

Milestones

Results/Accomplishments_{ASU}

Total conductivity of $SrCe_{1-x}Tm_xO_{3-\delta}$ in N2/O2 Gas Mixtures

Electronic conductivity decreases with increasing Tm doping due to additional phases beside perovskite present in $SrCe_{1-x}Tm_xO_{3-\delta}$ membranes at higher Tm doping levels

Results/Accomplishments_{ASU}

•XRD patterns of SrCe_{0.95-x}Zr_xTm_{0.05}O_{3-δ}

Total conductivity of SrCe_{0.95-x}Zr_xTm_{0.05}O_{3-δ} at 900°C

gti₅

All membranes doped with Zr have single perovskite structure Total conductivity decreases with increasing Zr doping due to lower electronic conductivity of Zr

Normalized Intensity

Results/Accomplishments_{ASU}

 Temperature dependence of protonic conductivity and proton transfer number of SrCe_{0.75}Zr_{0.20}Tm_{0.05}O_{3-δ}

Results/AccomplishmentsDOE-NETL

Membrane Performance in Clean H₂

1000/Temperature [1/K]

Results/AccomplishmentsDOE-NETL

50

Performance in Sour H₂

- At 700°C, all alloys tested showed negligible impact upon the introduction of a 0.1%-10%He-H₂ gas mixture.
 - All membrane samples formed leaks prior to test completion

Introduced H₂S mixture

1000ppm H₂S, 10%He, Bal. H₂

30

Test Duration [hrs]

35

40

10%He, Bal. H₂

25

35

30

25

20

15

10

5

15

20

 H_2 Flux [cm³ / cm² / min]

 Failure apparently occurs at grain boundaries

Results/Accomplishmentsdoe-Netl

Addition of Stabilizing Elements

Select elements have shown promise in in enhancing corrosion resistance, mechanical strength and stabilization of grain boundaries.

200 µm Ingots have been fabricated •SEM Surface Image Y203 Pd Working towards making a "testable" membrane 100 µm SEM Surface Image Si Pd

Accomplishments_{SCHOTT}

Sample	Pd (ppm)
CMAS-1 Pt pot remelt	< 5
CMAS-1 Pd pot remelt	592

 ⇒ One composition identified and verified to have high Pd solubility

•17

Accomplishments_{SCHOTT}

CMAS-1

⇒ Thermal analysis further supports initial choice

•Pd

•Pt

Accomplishments_{SCHOTT}

•CMAS-2

 \Rightarrow Solubility testing and thermal analysis reveals second possible composition

gti₅

H₂/He Permeation Testing at 850°C and 1bar Pressure

- > Thickness of membrane- 1mm
- > Feed: 100% H₂
- > Feed pressure-ambient
- > Sweep gas-N₂
- > Stable performance

gti₅

Effect of H₂S on Pd₈₀Cu₂₀ alloy membrane at 850°C

Sulfur tolerance at high temperature

Permeation testing with simulated biomass-derived syngas

Membrane Thickness-100 microns Initial Feed Gas: 20%H₂/80%He Syngas mixture: 20%H₂, 20% CO,10% CO₂, 10% H₂O with balance of Helium Feed pressure-30 atmospheres Temperature – 850°C

Sweep gas- N₂

gti₅

Durability testing with simulated biomass-derived syngas at 850°C

Thickness-100 microns

Feed : 20%H₂, 20% CO, 10% CO₂,

10% H_2O , balance of Helium

Feed pressure-30 atm

Temperature – 850°C

Sweep gas- N₂

After 20 hours of testing membrane has

50% activity from initial value.

gti

Future Work

- Study structural stability and H₂ permeance of different membrane compositions
- > Synthesis of a thin-proton conducting ceramic membranes on a porous support
 - Synthesis method will be optimized so thin membranes up to 5µm thick will be developed
- > Continue to identify metal additives to enhance the catalytic activity of Pd-based alloys in the presence of sour-H₂
- > Continue to explore the feasibility of using "rareearth" additives to enhance chemical and mechanical stability of highly-permeable Pd-based alloys

Future Work

- > Prepare Pd-containing glass melts in "significant" volume (liter-sized melts) and ceramize to make glass-ceramics
- Fabricate appropriate parts for H₂ permeation testing at GTI
- > Use feedback from such testing to verify/deny current approach (potentially a go/no-go point)