A Novel Slurry Based Biomass Reforming Process (DE-FG36-05G015042)

<u>T. H. Vanderspurt</u>, S. C. Emerson, R. Willigan, T. Davis, A. Peles, Y. She, S. Arsenault, R. Hebert, J. MacLeod, G. Marigliani, & S. Seiser

12 June 2008

United Technologies Research Center, East Hartford, CT

Project ID #PD31

This document does not contain any proprietary, confidential, or otherwise restricted information.

Research Center

DOE Hydrogen Program

Overview

Timeline

- Start May 2005
- End March 2009
- ≈50% Complete

Budget

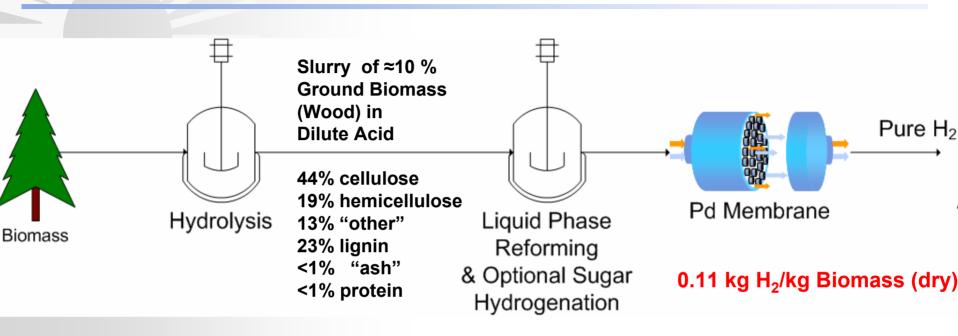
- Total Project Funding
 - DOE share \$2.9M
 - Contractor share \$737k
- Funding Received in FY07
 - \$650k from DOE
- Funding for FY08
 - \$800k (projected)

Barriers

- Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan
 - S. Feedstock Cost and Availability
 - T. Capital Costs and Efficiency of Biomass Gasification/Pyrolysis Technology

Partners

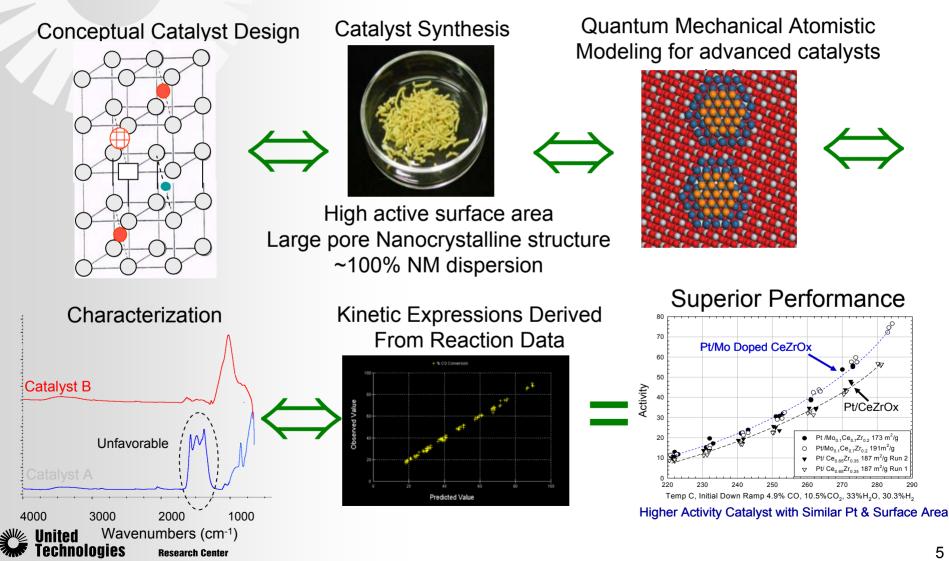
 University of North Dakota Environment Energy Research Center



Objectives

- (2007) Illustrate, through an initial feasibility analysis on a 2000 ton/day (dry) biomass plant design, that there is a viable technico-economical path towards the DOE's 2012 efficiency target (43% LHV) and assess the requirements for meeting the DOE's cost target (\$1.60/kg H₂).
- (2008) Demonstrate, through preliminary results, that an acid tolerant, model sugar solution reforming catalyst with acceptable kinetics has been synthesized and that a viable technical path for scale up (mass production) of this catalyst in a cost-effective way exists.
- (2008) Identify hydrolysis conditions for a simulated biomass system and a viable technico-economical path towards the achievement of the hydrolysis of the real biomass system.
- (2008) Demonstrate, through extensive test results, an acid tolerant, long life, cost-effective biomass hydrolysis product reforming catalyst.

Approach: Biomass Slurry to Hydrogen Concept



- Fuel flexible, using raw, ground biomass such as wood or switch grass
- Carbon neutral means of producing Hydrogen
- H₂ separation: Leverage experience with Advanced Pd membranes

Hydrogen from Biomass UTRC Catalyst Discovery Approach

Successfully Employed to Develop High Activity, Long Lived (>5X) Catalysts

Simplified Biomass Hydrolysis and Reforming Processes Modeling Basis

■Dilute acid hydrolysis H_3O^+ $(C_6H_{10}O_5)_n + nH_2O \rightarrow nC_6H_{12}O_6$

Liquid phase reforming

 $C_6H_{12}O_6 + 6H_2O \rightarrow 12H_2 + 6CO_2$

 $C_6H_{12}O_6 \rightarrow 3CO_2 + 3CH_4$

H₂ separation

Pd membrane is used for H₂ separation

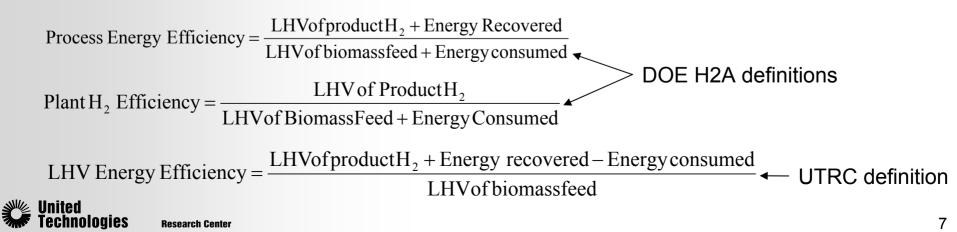
Lignin combustion

 $C_{7.4}H_{14}O_{1.4} + 10.2O_2 \rightarrow 7.4CO_2 + 7H_2O$

Sulfur recovery

$$SO_2 + 0.5O_2 \rightarrow SO_3$$

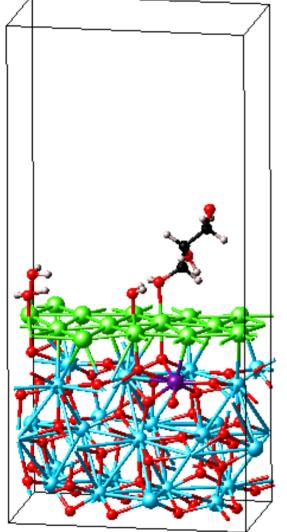
 $SO_3 + H_2O \rightarrow H_2SO_4$


 $LHV Energy Efficiency = \frac{LHV of product H_2 + Energy recovered - Energy consumed}{LHV of biomassfeed}$

Research Center

Key Features of Proposed Biomass Reforming Plant

- •Sulfur/acid tolerant Pt-alloy rafts/nano-engineered mixed metal oxide catalysts will be developed for liquid phase oxygenates (sugar) reforming
- •Lignin, byproduct fuel gas and unrecovered H₂ are burned to provide thermal energy thus increasing system efficiency.
- •Recycling of the hot water used for hydrolysis increases system intensity.
- •Sulfur recovery & recycle as H₂SO₄ lowers costs and minimizes emissions
- •54.2% LHV energy efficiency (46.6% plant H₂ efficiency) achieved through comprehensive thermal integration



Summary from 2007

- Biomass reforming plant design with a system HYSYS simulation LHV efficiency of 54% is proposed.
- The thermally integrated design yields high efficiency and minimizes sulfur emissions.
- Major drivers on the efficiency were identified in parameter sensitivity studies.
- > 50% LHV efficiency operating regime identified through DOE studies.
- Hydrolysis and reforming catalyst/reactor performance targets identified.
- Hydrogen production cost of \$1.60/kg H₂ is achievable with this process.

Explore Oxide Doping to Impact Reactant-Pt Binding Energies

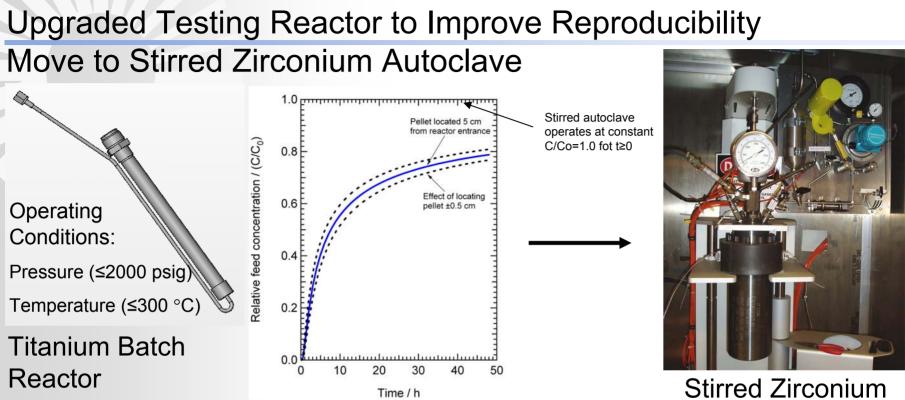
VASP DFT Calculations; Assumptions:

- Reforming reaction requires at least some Pt Sites
- Glycerol reacts on Pt
- H₂S as a surrogate for other poisons; competes for sites
- Work is continuing

0

Nb

Pt

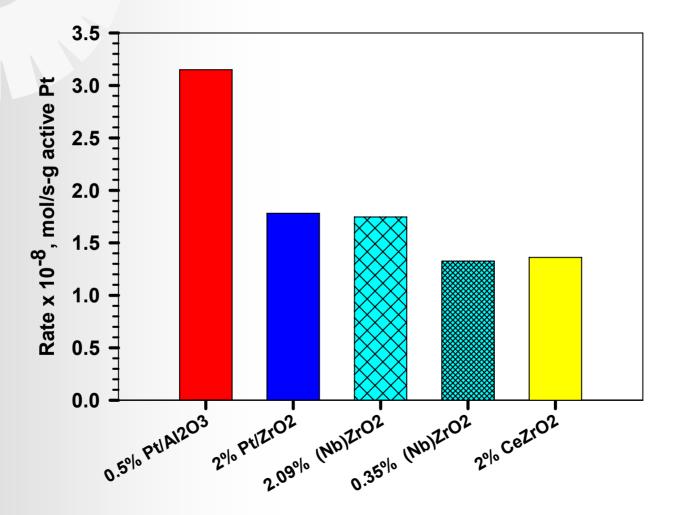

С

• Other deactivation mechanisms not yet considered

Calculated binding energies, E, for H_2O , glycerol, and H_2S molecules on hydrated oxide surfaces and hydrated Pt monolayer on pure and doped oxides.

Material Surface	$E_{\mathrm{H_2O}}$ (eV)	E_{glycerol} (eV)	$E_{\mathrm{H_2S}}$ (eV)
TiO ₂ (wet)	-0.72	-0.93	-0.37
Pt/TiO_2	-1.086	-1.076	-1.658
$Pt/(AI)TiO_2$	-1.105	-1.180	-1.634
$Pt/(Zr)TiO_2$	-1.069	-1.013	-1.606
$Pt/(V)TiO_2$	-0.75	-0.93	-1.25
ZrO ₂ (wet)	-0.80	-0.48	-0.13
Pt/ZrO ₂	-0.848	-0.645	-1.207
$Pt/(Nb)ZrO_2$	-1.147	-1.558	-1.495

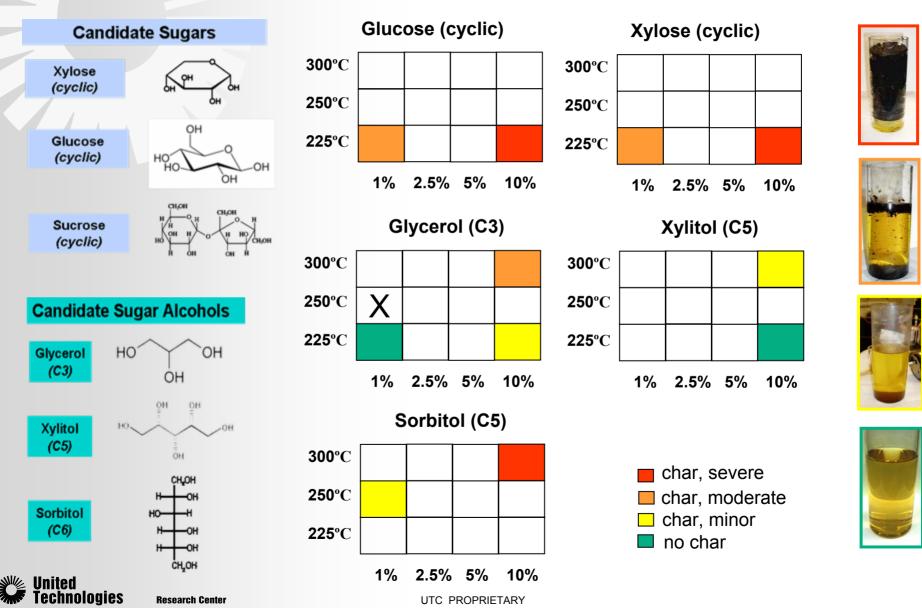
Autoclave

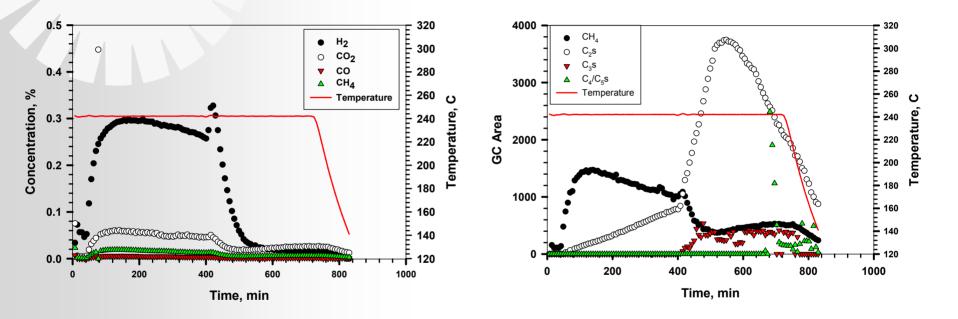

- Reproducibility of Pt/alumina reference motivated reactor switch
 - Pt-dissolution from vendor catalyst
- Introduction of feed into batch reactor contributed to variability

Low diffusivity of glycerol

No significant agitation for convective mixing (N₂ sweep gas only)

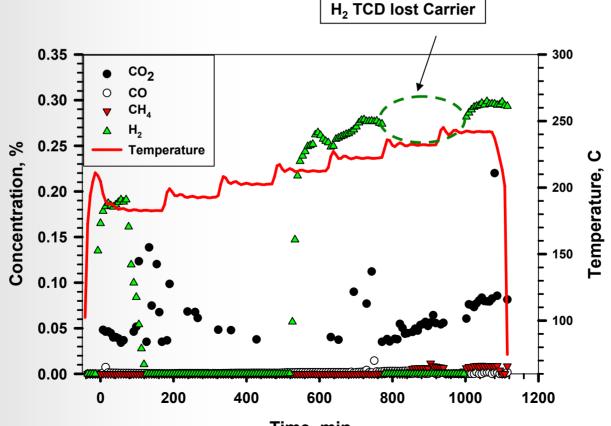
Small variability in catalyst pellet placement complicates diffusion resistance


Glycerol to Hydrogen Rate for Various Catalysts 240 °C, 2.5 wt% (0.283 M) Glycerol (0.283 M)



Sugar / Sugar Alcohol Reaction Conditions

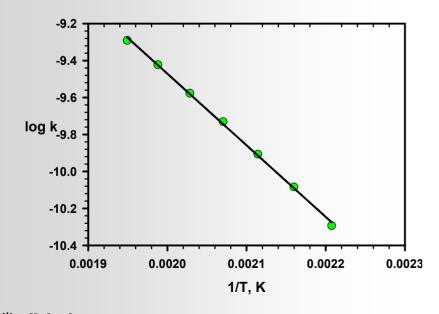
Temperature and concentrations ranges set based on charring studies

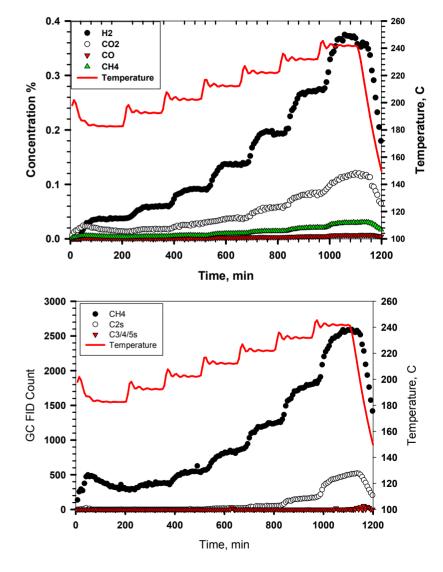

0.5% Pt/Al₂O₃ Testing- KHSO₄ Addition Terminates H₂ Production

- 2.5 wt% Glycerol (0.283M); 0.1M KHSO₄ addition at 400 min
- Immediate termination of H₂ production
- Increased production of C₂ and C₃+ Species

0.5% Pt/Al₂O₃ Testing- Temperature Ramp

- Temperature ramped from 180 °C to 240 °C
 - 2.5 wt% (0.283 M) Glycerol
 - No H₂ production below 210 °C
 - Initial H₂ production due to temperature overshoot





Time, min

2% Pt/Ce_{0.6}Zr_{0.4}O₂ Testing — H₂ Production at <190 °C

- 2.5 wt% (0.283 M) Glycerol
- 93% selectivity towards H₂ through the entire temperature range
- E_{act} = 74.2 kJ/mol
- Vendor prepared UTRC mixed metal oxide
- KHSO₄ Addition Tests underway

Work For 2008-2009

- (2008) Demonstrate, through preliminary results, that an acid tolerant, model sugar solution reforming catalyst with acceptable kinetics has been synthesized and that a viable technical path for scale up (mass production) of this catalyst in a cost-effective way exists.
 - (2008) Identify hydrolysis conditions for a simulated biomass system and a viable techno-economical path towards the achievement of the hydrolysis of the real biomass system.
- (2008) Demonstrate, through extensive test results, an acid tolerant, long life, costeffective biomass hydrolysis product reforming catalyst.
- Pending future funding, further hydrolysis optimization; additional catalyst development, including atomistic modeling; and a 1-kW scale demonstration and final techno-economic analysis at the end of the project.
- **Status:** Experimental effort now carried out in 2 liter stirred autoclave, earlier catalyst results called into question.
- Pt/Al₂O₃ outperforms uniformly loaded Pt/ZrO₂ family at 240 °C on a per site basis without KHSO₄
- Pt/CeZrO_x catalyst active at 180 °C without KHSO₄.
- KHSO₄ addition shuts down H₂ production while increasing ethane production
- Retest of Pt/CeZrO_x Water Gas Shift Catalyst with KHSO₄ underway

