

DOE Hydrogen Program

1

Maximizing Light Utilization Efficiency and Hydrogen Production in Microalgal Cultures

Tasios Melis University of California - Berkeley Thursday, 12 June 2008 Project ID # PD33

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start: 01-Dec-2004
- End: 30-Nov-2010
- Completion: 60%

Budget

- Total Project Funding
- DOE: \$1.2 M, UCB: \$450 k
- Funding for FY08
- DOE: \$258 k, UCB: \$75 k Funding for FY07
- DOE: \$660 k, UCB: \$75 k

Barriers addressed

 Low Light Utilization Efficiency in Photobiological Hydrogen Production due to a Large Photosystem Chlorophyll Antenna Size (Barrier X).

None: Sole
Source Effort

Objectives and Approach

Objective: Minimize the chlorophyll antenna size of photosynthesis to maximize solar conversion efficiency in green algae.

(Identify and characterize genes that regulate the ChI antenna size in the model green alga *ChIamydomonas reinhardtii.* Apply these genes to other green algae, as needed.)

<u>Approach</u>: Interfere with the molecular mechanism for the regulation of the chlorophyll antenna size.

(Employ DNA insertional mutagenesis and highthroughput screening to isolate tagged green algae with a smaller Chl antenna size.)

Regulation of the Chl antenna size

Interference with the genetic mechanism for the regulation of the ChI antenna size, to derive a permanently truncated ChI antenna size, is the goal of this R&D.

Hydrogen production in a backyard

Chlamydomonas reinhardtii mass culture

Fully pigmented cells over-absorb and wastefully dissipate bright sunlight.

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Truncated ChI antenna cells permit greater transmittance of light and overall better solar utilization by the culture.

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Technical Barriers and Targets

- <u>Barrier X</u>: Low Light Utilization Efficiency in Photobiological Hydrogen Production due to a Large Photosystem Chlorophyll Antenna Size.
- Light Utilization Efficiency of WT green algae: ~3%
- <u>Theoretical maximum efficiency</u>: ~30%
- <u>Target for 2010</u>: Reach a 15% Utilization Efficiency of Absorbed Light Energy.

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Measurement in Scale-up Cultures

Cultures in the Greenhouse

Parameter	<u>WT</u>	<u>tla1</u>	
Cell/mL (x10 ⁶)	6.36	10.0	
[Chl] (uM)	25.6	15.4	

The *tla1* strain shows greater productivity than the wild type cells under bright sunlight conditions. (Note relative amounts of gas bubbles produced by the two samples.)

Productivity in Scale-up Cultures

11

Current Technical Accomplishments Analysis of the *tla1*, *tlaX* and *tlaNew* mutants

• Molecular analysis of the *tla1* mutation.

Genomic, cDNA and protein sequences for the *Tla1* gene were published. Complementation of the *tla1* mutant with the *Tla1* gene succeeded. Analysis of the complemented strains was implemented.

• Biochemical analysis of the *tla1* mutation.

Antibodies against the Tla1 protein were raised. Hydropathy plot of the Tla1 protein measured. Sequence homologies for the Tla1 protein and phylogenetics completed.

- Functional analysis of the *Tla1* gene. Regulation of the chlorophyll antenna size by the *Tla1* gene completed.
- Biophysical and biochemical analyses of the *tlaX* and *tlaNew* mutants.

Chlorophyll antenna size, relative productivity, LHC expression levels.

Current Technical Accomplishments

Mapping of the *tla1* mutation and WT *Tla1* gene structure

tla1 mutant DNA

Current Technical Accomplishments

tla1 mutant complementation

Complementation of the pale-green tla1 mutant with the wild type Tla1 gene resulted in tla1comp1, *tla1*-comp2, and *tla1*-comp3 strains with restored dense green pigmentation properties.

Current Technical Accomplishments

Sequence homologies for the Tla1 protein

C. reinhardtii	MTFSCSADQT <mark>ALLKILAHAAKYPSNSVNGVLVG</mark> TAKEGGS <mark>VEILDA</mark>
A. thaliana	MGMGSNGELKYEISQN <mark>AYIKLVLHSLRHKTAAVNGVLVG</mark> RISPKDDGV <mark>VEISDS</mark> '
O. sativa	MGAECKYEVAQV <mark>AYVKLALHALKHPAAAVNGLLVG</mark> RLLDGAASPAAV <mark>VSIADA</mark> '
H. sapiens	MGEVEISAL <mark>AYVKMCLHAARYPHAAVNGLFLA</mark> PAPRSGEG <mark>LCLTDC</mark> '
D. melanogaster	MCDYKVSER <mark>AYAKLIFHAAKYPHQAVNGLLLA</mark> EKTSKGSQ <mark>VEIVDA</mark>
	* * *: *: :***:::. :: *: *:
C. reinhardtii	CHTTLTLAPALEIGLAQVESYTHITGSVAIVGYYQSDARFGPGDLPPL-GRKIADI
A. thaliana	FHSNLALLPPLEISLIMIEEHYVAQG-LSIVGYFHANERFDDVELCGV-AKNIGD
0. sativa	<mark>SHHPHHLPLLPTLELALTLVEDHFAAQG-LAVVGYYHA</mark> NARRDDADLPPV-AKRVGDI
H. sapiens	<mark>FHSHLALSVMLEVALNQVDVWGAQAG-LVVAGYYHA</mark> NAAVNDQSPGPL-ALKIAGI
D. melanogaster	<mark>FHQCLYVTPMAEVALMLIDAHAEREG-LVIAGYYAA</mark> PENFYDNQVDKTPAAKIADI
	* * : *:.* :: * : :.**: :
C. reinhardtii	EHQAQ <mark>AVVLVLDNKRL</mark> EQFCKAQADNP-FELFSKDGSKGWKRASADGG-ELALKNADI
A. thaliana	RYFPQ <mark>APILLLNNKKL</mark> EALSKGKERSPVMQLCVKDASKNWRVVGADGGSKLLLKEPS
0. sativa	RNFPR <mark>AAVLLLDNKKL</mark> EEAVKGKSREPVVQLYTRDSSKSWRQAGSDGSSQLTLKEPS'
H. sapiens	EFFPD <mark>AVLIMLDNQKL</mark> VPQPRVPPVIVLENQGLR-WVPKDKNLVMWRDWEE;
D. melanogaster	ENFKN <mark>ACFVVVDN-KL</mark> MTLQHDRAAIQVFNCPGDSGAR-WSKAKFTLSQASI
	. * .:::* :* : :* :
C. reinhardtii	LREEFFVMFKQLKH <mark>RTLHDFEEHLDDAGKDWLNKGF</mark> ASSV-KFLLPGNAL
A. thaliana	VLSDYISSEKW <mark>KDVTDVDDHLDDVTKDWLNPGL</mark> FN
0. sativa	VLADHVTTKKW <mark>QQVVDFDDHLDDISKDWLNPGL</mark> LA
H. sapiens	MVGALLEDRAH <mark>QHLVDFDCHLDDIRQDWTNQRL</mark> NTQITQWVGPTNGNGNA-
D. melanogaster	EGVSLLLKRGAM <mark>RDLVDFDNHLDNPDKNWTNDFL</mark> NQPLNDLQKLY

Tla1 Hypotheses Investigated

- The *Tla1* gene has been recruited by different organisms to perform different functions.
- The *Tla1* gene regulates the relationship between nucleus and organelles.

Summary of Accomplishments

Analysis of the *tla1*, *tlaX* and *tlaNew* mutants

- Competed the biochemical characterization of the *tla1* mutant and the molecular analysis of the *Tla1* gene.
- Down-regulation of the ubiquitous *Tla1* gene could be applied in the regulation of the chlorophyll antenna size in microalgae.
- Demonstrated higher yields of photosynthesis in microalgae with a truncated chlorophyll antenna size.
- Advanced the biophysical and biochemical analyses of the *tlaX* and *tlaNew* mutant. Encountered difficulties in the molecular analysis of this mutant.

Progress achieved *vs* the DOE targets

Utilization Efficiency of Incident Solar Light Energy, E₀xE₁, %

	2000	2003	2005	2008	2010	2015
Program Targets	3%	10%			15%	20%
Progress	3%	10% <i>tla1</i>	15% <i>tlaX</i>	25% tlaNew		

Significance of Work

- First-time identification and documentation of a gene (*Tla1*) that regulates the development of the chlorophyll antenna size in photosynthesis.
- Findings could be applied in the modification of the ChI antenna size in microalgae and higher plants, helping to increase solar conversion efficiencies and photobiological hydrogen production.

Current Work

Complete the characterization of the function of the *Tla1* gene and address how can this be applied to other organisms in truncating the Chl antenna size.

Employ transformation protocols, such as sense, antisense & RNAi) with the *Tla1* gene to enhance the down-regulation of the Chl antenna size in wild type *Chlamydomonas reinhardtii*.

Future Work

Continue work with the cloning of genes conferring the "truncated Chl antenna" phenotype in strains *tlaX* and *tlaNew*. (Entails molecular, genetic, biochemical, physiological and scale-up studies with these strains.)

Summary

- Completed first part of work on the *Tla1* gene.
- Filed patent application on the *Tla1* gene.
- UC Berkeley issued non-exclusive license to Tla1.
- Published findings in peer reviewed journal:

Tetali SD, Mitra M and Melis A (2007) Development of the light-harvesting chlorophyll antenna in the green alga *Chlamydomonas reinhardtii* is regulated by the novel *Tla1* gene. Planta 225: 813-829

Invited presentations on *Tla1* work at the:

- -- 14th International Congress on Photosynthesis, Glasgow, Scotland; Symposium on Bioenergy and Photosynthesis.
- -- 91st Annual Meeting of the Optical Society of America.
- -- International Symposium on Material Issues in a Hydrogen Economy.
- -- University of Nebraska, Lincoln.