

PHOTOELECTROCHEMICAL HYDROGEN PRODUCTION: DOE PEC Working Group Overview & UNLV-SHGR Program Subtask

Eric L. Miller

Roxanne Garland

U.S. Department of Energy PEC WG Chair Hawaii Natural Energy Institute University of Hawaii at Manoa

Robert Perret

UNLV Research Foundation SHGR Manager

12 June 2008 D.O.E Hydrogen Program Review Arlington, VA

#PD35

This presentation does not contain any proprietary or confidential information

DOE Hydrogen Program Review 2008 Arlington

www.hnei.hawaii.edu

HAWAII NATURAL ENERGY INSTITUTE

PART ONE

The US DOE WORKING GROUP ON PHOTOELECTROCHEMICAL (PEC) HYDROGEN PRODUCTION

Roxanne Garland: Group Chair *U.S. Department of Energy* Eric Lars Miller: Group Co-Chair University of Hawaii at Manoa

OVERVIEW PEC WORKING GROUP

The DOE PEC Working Group is a collaborative effort between Academic, Industry and National Laboratory leaders to research and develop semiconductor systems for photoelectrochemical (PEC) hydrogen-production. Working Group Members with current DOE financial support include:

University of Hawaii at Manoa > University of Nevada Las Vegas > University of Toledo > University of California, Santa Barbara University of Nevada Reno > Caltech University > Stanford University Colorado State University > National Renewable Energy Laboratory Internatix Corporation >MVSystems Incorporated Midwest Optoelectronics

OBJECTIVES PEC WORKING GROUP

The DOE PEC Working Group's primary objective is to develop practical solar hydrogen-production technology, using innovative semiconductor materials & devices R&D to foster the needed scientific breakthroughs

DOE PEC Program Targets

Table 3.1.10. Technical Targets: Photoelectrochemical Hydrogen Production^a

Characteristics	Units	2003 Status	2006 Status	2013 Target	2018 Target [⊳]
Usable semiconductor bandgap ^c	eV	2.8	2.8	2.3	2.0
Chemical conversion process efficiency (EC) ^d	%	4	4	10	12
Plant solar-to-hydrogen efficiency (STH) ^e	%	not available	not available	8	10
Plant durability ^f	hr	not available	not available	1000	5000

photoelectrode-based PEC solar-H₂ production: must out-perform PV/electrolysis

THE PEC CHALLENGEPEC WORKING GROUP

NO Material System satisfies ALL requirements to efficiently split H₂O... Many have potential... *Thus the PROMISE & CHALLENGE of PEC*

ABSORBER MATERIAL

- -Sunlight conversion depends on bulk optical bandgap
- -Nature of optical transitions ('direct' vs. 'indirect') is important
- -Good bulk transport properties key to harnessing photo-carriers

INTERFACE DESIGN

- -Band-edge alignment important to reaction energetics
- -Surface bandgap plays an important role at interface
- -Interface kinetics critical in harnessing photo-carriers

INTEGRATED DEVICE DEVELOPMENT

- -Multi-junction configurations important for maximum solar utilization
- -Auxiliary components and proper integration key to efficiency
- HYDROGEN PRODUCTION SYSTEM DEVELOPMENT

-Balance of plant considerations could limit practicality

APPROACH PEC WORKING GROUP

The main approach of our collaborative network of world-leaders in materials R&D focuses on integrating state-of-the-art theoretical, synthesis and analytical techniques to identify and develop the most promising materials classes to meet the PEC challenges in efficiency, stability and cost.

> The PEC Materials R&D Feedback Loop

THEORY: Materials & Interface Modeling

-Theoretical Calculations of Semiconductor Band Structures

SYNTHESIS: Materials Discovery / Development

- -Physical and Chemical Vapor Deposition
- -Combinatorial & Manufacture-Scale Synthesis Techniques

ANALYSIS: Materials & Device Characterization

- -Physical/Solid-State Electronic/Optoelectronic Properties
- -Solid-Solid & Solid-Liquid Interface Characteristics
- -Photoelectrochemical Behavior Analysis

- Continue to Develop the PEC "Tool-Chest", and to Apply to the Selection and R&D of the Most Promising Focus Materials & Systems, including:
 - •*Metal Oxides (WO₃, Fe₂O₃, TiO₂, ZnO, etc.)*
 - Mixed-Metal Oxides (CoFeAl Spinels, etc.)
 - Group III-V Semiconductors
 - •Amorphous Silicon-Compound Semiconductors
 - Copper Chalcopyrite Alloy Semiconductors
 - •Metal Nitrides, Oxinitrides, and Sulfides
 - Mixed-Semiconductor, Multi-junction Systems

- Supporting the development of theoretical, synthesis, and characterization tools vital to the R&D of PEC materials, interfaces, devices and systems
- Supporting group-member research activities to develop PEC materials, interfaces, devices and systems
- Developing standardized PEC materials and device measurement protocols essential to research validation
- Developing the up- and down-selection criteria for viable PEC materials systems critical to prioritizing research resources
- Initiating "Techno-Economic" analyses of the practical viability of PEC solar-hydrogen production plants
- Expanding collaborative research both nationally and internationally (e.g., coordinated PEC research with IEA, IPHE..)

PART TWO

The DOE UNLV-SHGR PROGRAM:

PEC SUBTASK

Robert Perret: Project Manager University of Nevada Las Vegas Research Foundation

SHGR PEC subtask collaborators

OVERVIEW DOE-SHGR PEC

-Y: Materials Efficiency

-Z: Materials Durability

Timeline

Barriers

Barriers for photoelectrochemical

hydrogen production technologies:

- Project start date: <u>1 Oct. 2004</u>
- Project end date: <u>31 Oct. 2008</u>
- Percent complete: 85%

Budget

- Total project funding: <u>\$2.84M</u>
 - -DOE share: \$2.12M
 - -Contractor share: \$721k
- FY06 Funding : <u>\$ 958k</u>
- Funding for FY07: <u>\$0</u>
 - -No-cost extension to 10/31/08

Collaborators / Pls

-AC: Device Configuration Designs

- University of Hawaii at Manoa/ Eric L. Miller
- University of Nevada, Las Vegas/ Clemens Heske

-AB: Bulk Materials Synthesis

- University of California, Santa Barbara/ Eric McFarland
- MVSystems Incorporated/ Arun Madan
- Intematix Corporation/ Xiaodong Xiang
- Altair Nanotechnologies Incorporated/ Vesco Manev
- National Renewable Energy Laboratory/ John Turner
 & Mowafak Al-Jassim

Identify and develop PEC thin-film materials systems compatible with high-efficiency, low-cost H₂ production devices:

Target Range: 1.6 – 6.5 mA/cm² AM 1.5 PEC photocurrent (with 100-1000 hour durability)

Demonstrate functional multi-junction device incorporating bestavailable PEC film materials:

 \rightarrow Target Range: 2 - 8 % STH conversion efficiency (AM 1.5)

Develop collaborative avenues (national and international), integrating the best theoretical, synthesis and analytical techniques, for optimizing future PEC materials and devices

Explore avenues toward manufacture-scaled devices and systems

APPROACH DOE-SHGR PEC

> Develop & Refine the PEC "TOOL-CHEST":

THEORY: Materials & Interface Modeling
SYNTHESIS: Materials Discovery / Development
ANALYSIS: Materials & Device Characterization

> Apply to the Development of Focus Materials Classes:

- TUNGSTEN -Based Compounds
- SILICON-Based Compounds
- COPPER-CHALCOPYRITE Compounds
- ZINC-OXIDE -Based Compounds
- IRON-OXIDE -Based Compounds
- Others (outside of SHGR umbrella)

¹³ PROGRESS OVERVIEW DOE-SHGR PEC >Important Advances in PEC Materials Theory

- >Expansion of PEC Materials Synthesis Techniques
- >Continued Progress in PEC Materials Characterizations
- Successful Application of New "Tool-Chest" Capabilities
- Significant Results in Focus Materials Classes
- Further Expansion of Collaborative Research Efforts
- >Avenues Developed for Continued Research Funding

Density Functional theory study of metal-oxides: Band engineering for better PEC*

WO₃ Systems

theory provides invaluable guidance in tungsten-based materials

*M.N. Huda, A. Walsh, Yanfa Yan, S.-H. Wei, M. Al-Jassim, and J. Turner: National Renewable Energy Laboratory

Density Functional theory study of metal-oxides: Band engineering for better PEC

ZnO:GaN Systems

theory provides general guidance in synthesis of mixed-metal oxides

- ZnO-GaN results in reduced band gap
- Band gap reduction is asymmetric
- ZnO is a better host than GaN
- Random alloy system is more effective than the super-lattice system

Host	Eg reduction		
Ga-N in ZnO	0.410		
Zn-O in GaN	0.102		

ZnO is a better host than GaN for Eg reduction

n, number of ZnO (or GaN) layer

Calculated total absorption coefficient spectra

Density Functional theory study of metal-oxides: Band engineering for better PEC

Co-Fe-Al Spinel Systems

powerful theoretical to identify new promising mixed-metal oxide systems

- Calculation of structural, magnetic and electronic properties of nine binary and ternary spinel oxides formed from Co, Al and Fe
- Examination of energetics of possible intrinsic point defects and Fe-doping in spinel CoAl₂O₄ and their effect on its electronic & chemical properties

(Above) Summary of the calculated structural and electronic properties of the three binary and six ternary Co-Fe-Al spinels.

(Left) Calculated intrinsic defect formation energies as a function of the Fermi level under Co rich and O rich conditions

Future work can be guided by "Theoretical Combinatorial Discovery"

		Ry	eV	VBM(Ry)	eV	CBM (Ry)	Gap (eV)		
ZnO	0-1s	-36,88521	-501.639	0.253161	3.442992	1.8918(eV)	0.8		
CuAIO2	0-1s	-36.72122	-499.409	0.479977	6.527694	0.626988448	1.999349281	indirect	WIEN2k
CuYO2	0-1s	-36.77843	-500.187	0.349289	4.750336	0.541505768	2.614142472	direct	
CuMnO2	0-1s	-36.84509	-501.093					-	metallic compound
CuWO4	O-1s	-36,69258	-499.019	0.489023	6.650707	0.668499565	2.440887114	indirect	Not delafossite
YTaO4	0-1s	36.573963	497.4059	0.490876	6.675919	0.769877542	3.794415934	indirect	
YVD4 YNbO4	0-1s 0-1s	CuBO ₂	, CuAlo	O ₂ , CuScO ₂ ,	CuYO	₂ , CuLaC	D ₂ , CuEu	0 ₂ ,	mettalic compound
YVD4 YNbO4	0-1s 0-1s	CuBO ₂	, CuAl	O ₂ , CuScO ₂ , CuMnO ₂ YTaO₄, YV	CuYO , CuW ⁄O ₄ , YN	₂ , CuLaC O ₄ , IbO ₄ ,	D ₂ , CuEu	0 ₂ ,	mettalic compound
YVD4 YNbO4	0-1s 0-1s	CuBO ₂	, CuAlo ZnV20	O ₂ , CuScO ₂ , CuMnO ₂ YTaO₄, YV	CuYO , CuW ⁄O ₄ , YN , ZnCr	₂ , CuLaC O ₄ , NbO₄, 2O₄, ZnT	D ₂ , CuEu FiO ₂ ,	O ₂ ,	mettalic compound
YVD4 YNbO4 ZnO	0-1s 0-1s 0-1s	CuBO ₂	, CuAl0 ZnV20 ically n	O ₂ , CuScO ₂ , CuMnO ₂ YTaO₄, YV O₄, ZnMn2O nain obstacle	CuYO ,, CuW (O ₄ , YN ,, <u>ZnCr</u> e is to (₂ , CuLaC O ₄ , IbO ₄ , 2O₄, Zn∃ calculate	D ₂ , CuEu FiO ₃ , band-off	O ₂ , fset.	mettalic compound
YVD4 YNbO4 ZnO ZnV2O4	0-1s 0-1s 0-1s 0-1s	CuBO ₂ Theoret	, CuAlo ZnV20 ically n nd, of-0	D ₂ , CuScO ₂ , CuMnO ₂ YTaO ₄ , YV D ₄ , ZnMn2O nain obstacle	CuYO , CuW (O ₄ , YN , <u>ZnCr</u> e is to (₂ , CuLaC O ₄ , IbO ₄ , 2O₄, ZnT calculate d-gap pr	D ₂ , CuEu TiO ₃ , band-off oblem.	O ₂ , fset.	mettalic compound
YVO4 YNbO4 ZnO ZnV2O4 ZnMn2O4	0-1s 0-1s 0-1s 0-1s 0-1s	CuBO ₂ Theoret Au 502.56950	, CuAl ZnV20 ically n nd, of-0	D ₂ , CuScO ₂ , CuMnO ₂ YTaO ₄ , YV D ₄ , ZnMn2O main obstacle course, the c	CuYO ,, CuW (O ₄ , YN ,, <u>ZnCr</u> e is to (old ban	2, CuLaC O ₄ , IbO ₄ , <u>2O₄, ZnT</u> calculate d-gap pro 4.1815	D ₂ , CuEu FiO ₃ , band-off oblem.	O ₂ , fset.	mettalic compound by VASP

¹⁸ Diverse Synthesis Routes DOE-SHGR PEC

The SHGR team commands a broad portfolio of thin film synthesis techniques to facilitate the discovery and development of PEC materials and devicesincluding a range of advanced techniques for rapid discovery of new materials classes and the establishment of large-scale device fabrication...

Reactive sputtering system for compound material films

Physical Vapor Deposition Systems

- Chemical Vapor Deposition Systems
- Spray Pyrolysis Fabrication Systems
- Sol-Gel Fabrication Systems
- Combinatorial Synthesis Systems

Manufacture-Scale Film Technology

Automated combinatorial physicalvapor-deposition system

Cluster tool for vacuum-deposition of manufacture scale thin-film devices

Co-Evaporation system for copper chalcopyrite films

¹⁹ Characterization Progress DOE-SHGR PEC

Significant Development of Instrumentation Systems
 Progress in Establishing Standard Testing Protocols
 Significant Advances in Understanding of PEC Materials

Test Protocols: Experiment Complexity: (I) standard experiment, (II) medium complexity, (III) high

Characterization of Materials Properties

<u>Morphology:</u> Scanning Electron Microscopy (II), Atomic Force Microscopy (II), Spectroscopic Ellipsometry (I) <u>Microstructure:</u> X-Ray Diffractometry (I), Electron Backscattered Diffraction (II), Transmission Electron Microscopy (II) <u>Chemistry:</u> Secondary Ion Mass Spectrometry (II), X-ray Photoelectron Spectroscopy (II), X-ray Emission Spectroscopy (Synchrotron) (III), X-ray Absorption Spectroscopy (Synchrotron) (III), Energy-Dispersive X-ray Analysis (II)

Characterization of the Electronic Structure

(Electronic Surface Band Gap, Band Edges, Band Alignment, Fermi Energy, Work Function, Electrical Properties) UV Photoelectron Spectroscopy (II), Inverse Photoemission (III), Impedance Spectroscopy (I), UV-Vis Spectroscopy (I), Conductive Atomic Force Microscopy (III), Scanning Kelvin Probe Microscopy (III), Scanning Tunneling Microscopy/Spectroscopy (III)

Characterization of Optical and Photoelectrochemical Properties

Optical-Photoelectrochemical Combinatorial Screening (II), Diffuse Reflectance Spectroscopy (I), Solar Cell I-V Curve Testing (I), Solar Cell Spectral Response Measurement (I), Incident Photon to Current Efficiency (IPCE) (II), Photoluminescence (II), Cathodoluminescence (II)

²⁰ Characterization Progress DOE-SHGR PEC

Scanning Probé Microscope

Sample preparation and distribution

²¹ Characterization Progress DOE-SHGR PEC

First all-experimental depiction of the WO₃ surface electronic structure

²² Characterization Progress DOE-SHGR PEC

ZnO:N – Stoichiometry Determination with X-ray Emission Spectroscopy

Using the O K emission to determine the $Zn_3N_2/(ZnO+Zn_3N_2)$ ratio:

 $\begin{array}{l} \text{Zn } L\beta_1 \text{: } \text{Zn } 3d \rightarrow \text{Zn } 2p_{1/2} \\ \hline \textit{indicative for Zn-Zn bonds} \end{array}$

 $\label{eq:starsest} \begin{array}{l} \text{Zn 3d} \rightarrow \text{O 1s} \\ \textit{indicative for Zn-O bonds} \end{array}$

assuming that the investigated layers are composed of ZnO and Zn_3N_2 , the $Zn_3N_2/(ZnO+Zn_3N_2)$ ratio can be estimated.

Key tool in understand of bulk properties

²³ Characterization Progress DOE-SHGR PEC

Key Future Direction: In-situ Soft X-ray Spectroscopy

Specific Focus Materials DOE-SHGR PEC

PEC "Tool-Chest" Employed by SHGR Team in R&D of:

<u>Tungsten-Based Compound Films (UH, Internatix)</u>

-Modified Tungsten Oxide Compounds with Anion/Cation Substitutions

Copper Chalcopyrite Compound Films (UH)

-Copper-Indium-Gallium-Selenium-Sulfur Compounds

Silicon-Based Compound Films (MVSystems, UH)

-Amorphous Silicon Carbide Films with p- and n- type Doping

Iron-Based Compound Films (UCSB)

-Novel Iron-Based Compound Materials, including Fe₂O₃ Nanorods

Zinc-Based Compound Films (NREL)

-Modified Zinc Oxide Compounds with Anion/Cation Substitution

24

Tungsten-Based Material DOE-SHGR PEC

Tungsten oxide is a model material to study PEC hydrogen generation...

promise

- Sufficient absorption to generate moderate photocurrents (2.6eV)
- Good electron transport properties
- High Stability in Electrolytes
- Thin film process scalable
- Demonstrated in prototype multijunction devices

challenge

- Non ideal band edge alignment requires supplemental bias
- Bandgap requires reduction to increase photocurrents
- The photo-stability over extended time periods and for new tungstenalloy compositions requires validation

Mechanically-Stacked HPE Device Configuration

H₂-Production Photocurrent

WO₃ Material Progress DOE-SHGR PEC

key previous project results

26

- High-quality WO₃ films developed with <u>AM1.5 PEC photocurrents of 3.0 mA/cm²</u> (synthesized using low-temperature process)
- Nitrogen incorporation in WO₃ films reduced optical bandgap from <u>2.6eV to 2.1eV</u>; BUT disrupted grain structure & transport properties, reducing PEC photocurrents

key recent project results

- Molybdenum incorporation in the bulk WO₃ films resulted in moderate increase in absorption, BUT also disrupts grain structure
- Molybdenum incorporation at the surface improves interface properties, yielding new-benchmark <u>AM1.5 PEC photocurrents of 3.5 mA/cm²</u>

Band diagrams obtain from UPS and IPES analyses, Marcus Baer

Weinhardt et al., J. Phys. Chem. C, Vol. 112, No. 8, 2008

Mo/WO₃ PEC photocurrents

WO₃ Material Progress DOE-SHGR PEC

↑ improvements in WO₃ PEC performance

- Continued improvement in low-temp WO₃ film photocurrents and fill-factor (with considerable guidance from the ever improving PEC Tool-Chest)
- STH efficiencies of 3.1% (AM1.5) demonstrated HPE devices using 2006 films
- STH efficiencies of 4% (AM1.5) expected in HPE devices using 2007 films
- 100+ hours PEC stability exhibited in optimized WO₃ films
- Further improvements contingent on reducing bandgap of the absorber material....

WO₃ Path Forward DOE-SHGR PEC

Expand Collaborative Research Efforts to:

Eliminate lattice defects for WO₃ with nitrogen incorporation

- -New co-incorporation schemes (lessons learned from ZnO work)
- -New synthesis approaches
- Pursue bandgap reduction using different anion / cation species
 - -Ternary and quaternary compounds suggested by theoretical work
- Continue optimization of surface and interface
 - -Catalyst treatments and bi-layers
- Continue demonstration of integrated multi-junction devices
 - -Analysis and design of PV/PEC Hybrid Photoelectrode device structures
 - -Design of process-compatible fabrication sequence
 - –Break the 5% STH barrier for 2.6eV WO₃

Continued Funding Secured through DOE-MVSystems Project

Amorphous SiC Material DOE-SHGR PEC

Amorphous silicon carbide is a photoactive material with tunable bandgap, which would enable the fabrication of "all-silicon" multi-junction water-splitting devices

promise

- Tunable bandgap of 2.0-2.3 eV and good optoelectronic quality
- Large knowledge-base from a-Si PV technology
- Enables "all-silicon multi-junction device" to be fabricated in a "cluster tool" machine

challenge

- Non-ideal band edge alignment requires supplemental bias
- Kinetic limitations apparent for bare a-SiC electrodes
- Long term corrosion and photocorrosion behavior is not known

Bandgap tuning

Cluster-tool fabrication equipment

large-scale cluster tool design

reel-to-reel cassette*

* US patent #6,258,408B1: MVSystems

a-SiC Material Progress DOE-SHGR PEC

key previous project results

30

- Process conditions established for device-quality a-SiC:H material
- Demonstration of PEC junctions with <u>AM1.5 PEC photocurrents of 9 mA/cm²</u>

key recent project results

- > Demonstration of optimized a-SiC:H materials & devices with >5% PV efficiencies
- Implementation of experiments to enhance corrosion resistance
- Implementation of advanced bulk & surface characterizations to help find solutions to potential-offset and fill-factor limitations

substrate dependent

a-SiC Path Forward DOE-SHGR PEC

Expand Collaborative Research Efforts to:

Continue comprehensive PEC characterization of a-SiC photoelectrodes

- -band positions, electrode kinetics
- -long-term stability
- Continue optimization of a-SiC bulk films
 - -enhanced PEC photocurrent and fill-factor
- Continue optimization of surface and interface
 - -reduce potential-shift
 - -enhance stability

>Fabricate & characterize monolithic a-SiC/a-Si multijunction devices

-analysis and design of PV/PEC HPE device structures

-manufacture-scale processing

Continued Funding Secured through DOE-MVSystems Project

Cu-Chalcopyrite Progress DOE-SHGR PEC

Copper chalcopyrites are efficient absorber for thin-film solar cells and their optoelectronic properties are equally well-suited for photoelectrolysis

promise

challenge

Direct bandgap and good carrier transport properties

32

- High PEC photocurrents demonstrated for p-type Cu(In,Ga)Se₂ electrodes
- Bandgap and band edges "tunable" by composition
- Synergy with PV CIGS multi-junction device research and development

- Valence band edge of the Cu(In,Ga)Se₂ films too high
- Kinetic limitations apparent for bare electrodes
- Long term corrosion and photocorrosion behavior is not known
- >High-temperature fabrication steps

bandgap

bandgap tuning in $Cu(In_{(1-x)}Ga_x)(S_ySe_{(1-y)})_2$

CuInSe₂ (E_G=1.0 eV)

$$Culn_{0.4}Ga_{0.6}Se_2 (E_G = 1.4 eV)$$

CuGaSe₂ (E_G=1.68 eV)

$$CuGaS_2$$
 (E_G=2.43 eV)

Cu-Chalcopyrite Progress DOE-SHGR PEC

key previous project results

33

- PV-quality CIGSe films developed with <u>AM1.5 PEC photocurrents of 28 mA/cm²</u> (but with significant potential-shift needed due to flatband position)
- Demonstration of bandgap tuning using alloy variations

key recent project results

- High-quality CGSe films developed with <u>AM1.5 PEC photocurrents of 18 mA/cm²</u> (potential-shift improved over CIGSe, but fill factor worse)
- Demonstration of H₂ photo-production at CGSe surface stable for >10 hours
- Initial investigation of sulfur incorporation for further favorable band-edge shifts

CIGSe & CGSe PEC electrodes

CulnS₂ PEC electrodes

³⁴ Chalcopyrite Path Forward_{DOE-SHGR PEC}

Expand Collaborative Research Efforts to:

Continue comprehensive PEC characterization of Cu chalcopyrites

- characterize bulk and surface band positions, transitions and states
- in-situ PEC interface characterizations

Develop device-quality materials with wider bandgap & lower valence band

- fine-tune $Cu(In_{(1-x)}Ga_x)(S_ySe_{(1-y)})_2$ alloy- including sulfur
- graded CuGaSe₂ (e.g., Cu-poor surfaces)

Continue optimization of surface and interface

- reduce potential-shift, and enhance kinetics and stability

> Develop stacking process for multi-junction device configurations

Continued Funding Secured through DOE-MVSystems Project

PROGRAM SUMMARY DOE-SHGR PEC

Collaborative Approach has been a Complete Success!

The SHGR team, working closely with the DOE PEC Working Group, has developed an impressive "Tool Chest" of theoretical, synthesis and characterization techniques and successfully applied it in the R&D of important focus PEC materials systems

> Major Technical Targets Met in Focus Materials Research:

- Photocurrent target (>1.6mA/cm²) met in several films:

- 3.5 mA/cm² demonstrated in low temperature WO₃ films
- >9.0 mA/cm² demonstrated in amorphous silicon carbide
- >18 mA/cm² demonstrated in copper chalcopyrite films

- Conversion efficiency target (2-8% STH) met in HPE devices:

- 3.1% STH efficiency demonstrated using 2006 WO₃
- 4% STH efficiency expected using recent bi-layer WO₃
- <u>Stability target (100 hour durability) met:</u>
 - >100 hour stable operation demonstrated using WO₃

Funding Avenues Secured for the Follow-On Research Needed to Reach the Long-Term DOE Hydrogen Production Goals

FUTURE WORK DOE-SHGR PEC

Continue Current PEC R&D and Optimization Efforts Under New Funding Umbrellas <u>MVSystems</u>

-Focus material R&D: tungsten-, silicon-, chalcopyrite-, iron-based compounds -Accelerate interface, device and system development work

Continue DOE PEC Working Group Efforts

- -Further PEC "Tool-Chest" development efforts
- -Standardization of materials and device testing protocols
- -Refinement of materials selection and prioritization criteria

Expansion of Collaboration Efforts: Nationally and Internationally

- **–DOE PEC Working Group Expansion**
- -USA-led "International Energy Agency PEC Annex-26" offshoot of SHGR work
- -"International Partnership for a Hydrogen Economy" program proposal

Materials & Device Breakthroughs for High-Efficiency, Low-Cost PEC Hydrogen Production!