

Scale-up of Hydrogen Transport Membranes for IGCC and FutureGen Plants

Presented by

Doug S. Jack Eltron Research & Development Inc. June 13, 2008

Project PD-39

This presentation does not contain any proprietary or confidential information.

Overview

Timeline

- Phase I Start 1 Oct 2005
- Phase II Start 1 Apr 2009
- Phase II End 30 Jun 2013

Budget (\$000)

- ➢ Phase I Funding \$ 5,415
 ✓ DOE share: \$ 4,330
 ✓ Contractor share: \$ 1,085
- ➢ Funding for FY08 \$ 2,000
- Phase II Funding \$40,000
 - ✓ DOE Share \$31,000
 - ✓ Contractor share \$ 9,000

Barriers Addressed

- Reducing hydrogen cost
- Hydrogen production from diverse pathways
- Hydrogen of sufficient purity for fuel cells

Technical Targets

- Low-cost system to produce H₂ from coal-derived synthesis gas and enable cost effective capture of CO₂ for sequestration
- Obtain engineering scale-up data in 220 lb H₂ /day unit
- Design, build and operate 4 ton/day unit
- Tolerant to syn gas contaminants

Partners (prior to October 1, 2007)

- NORAM Engineering
- CoorsTek
- Praxair

DOE Project Manager – Arun Bose

DOE Contract DE-FC26-05NT42469

Program Objectives

- > Develop H_2/CO_2 Separation System, which
 - ✓ Retains CO_2 at coal gasifier pressures
 - ✓Operates near water-gas shift conditions
 - ✓ Tolerates reasonably achievable levels of coalderived impurities
 - ✓ Delivers pure H₂ for use in fuel cells, gas turbines, and hydrocarbon processing
 - ✓ Is cost effective compared to alternative technologies for carbon capture

Milestones

> FY07

- \checkmark **1Q** Establish optimum operating conditions for metal membranes to achieve DOE 2010 flux, selectivity, and cost targets and select candidate membranes for scale-up and tests in the sub-scale engineering prototype.
- ✓ 2Q Complete fabrication of new alloy materials and select metal materials for further scale-up and tests in the sub-scale engineering prototype.
- ✓ **3Q** Complete the design and cost estimate of the Impurity Management System upstream of the hydrogen membrane separation module unit to achieve the designed membrane operating life and engineering performance.
- \checkmark Select candidate catalyst composition and deposition technique to be scaled up for tests in the sub-scale engineering prototype.
- ✓ 4Q Complete the economic analysis of hydrogen separation membrane modules and balance of plant.
- \checkmark Deliver capital and operating cost estimates for large-scale membrane structures and identify a cost-effective means to manufacture large-scale membranes required for the SEP.

> FY08

- ✓ **1Q** Complete commissioning activities on high pressure lifetime skid units
- ✓ 2Q Begin operations of high pressure lifetime skid units
- \checkmark **3Q** Select feed catalyst composition for impurity testing
- \checkmark 4Q Update process flow sheets and demonstrate improved economics utilizing HTM in IGCC plants

Stage Gate Prior to Phase 2

- Clearly establish the economic advantages of our system applied to an IGCC flow sheet;
- Understand the manufacturability and costs for a scaled-up membrane system;
- Demonstrate the performance of the membranes in long term use with and without sulfur impurities; and,
- > Develop a design basis for the PDU.

Plan and Approach

- Materials Development
 - ✓ Examine membrane and catalyst compositions
 - ✓ Develop preparation techniques
 - ✓ Develop improved analytical characterization
- Performance Screening
 - ✓ Evaluate flux, life, impurities effects using WGS composition
 - ✓ Establish range of operating conditions
- Mechanical Design
 - ✓ Assess strength of materials, embrittlement, welding techniques, et al
 - ✓ Address manufacturing costs and maintenance issues
- Process Design and Economics
 - ✓ Integrate into IGCC flow sheets with and without co-production of H2 & power
 - ✓ Determine methods for impurity management
 - ✓ Develop models for membrane performance and design
 - ✓ Compare process economics versus other technologies
- Scale-up steps
 - \checkmark 1.5 lbs/day H2 production lab scale using simulated gas compositions
 - ✓ 220 lbs/day H2 production using coal-based SG slipstream
 - ✓ 4 tons/day H2 production complete engineering data package
 - Commercial module expected to be ~ 35 TPD H2 Production (4-8 required for 275 MW FutureGen plant)

Accomplishments Summary

- Designed, constructed and began operations on high pressure lifetime skids
- Improved characterization of membranes leading to better understanding of preparation and performance
- Developed alloys for membranes and catalysts leading to improved performance and manufacturability
- Demonstrated more stable membrane performance at lower temperature
- Developed modeling tools to characterize and design membranes/systems
- Improved membrane-based IGCC flow sheets showing:
 - ✓ Carbon capture over 95%
 - ✓ HHV efficiency ~6% better than conventional technology
 - ✓ Cost of electricity ~10% better than conventional technology

Lifetime High Pressure Reactors

HTM System Capabilities

> Ambient Reactors (2)

✓ Used for materials/parameter screening

- ✓ Flow rates <500 ml/min</p>
- Lab Reactors (2)
 - ✓ High pressure screening; not WGS-capable
 - ✓ Flow rates 3-5 L/min

High Pressure Lifetime Test Units (2)

- ✓ Full WGS capability
- ✓ Fully automated for unattended operation
- ✓ Flow Rates 1-2 L/min
- Scale-up Unit (1-4 reactors)
 - ✓ Full WGS capability
 - ✓ Flow rates >30 L/min

Membrane Characterization

Analytical Technique	Membrane Feature Characterized		
X-ray Diffraction	Phase(s)		
	Crystallite size		
	Orientation		
XPS / Auger Depth Profiling	Element Analysis		
	Contaminants		
SEM	Morphology		
 High Resolution 	Contaminants		
• EDX	Grain Structure		
TEM	Catalyst Thickness		
	Element Analysis		
	Catalyst / Membrane Interface		

Membrane Microstructure Cold-rolled vs. Deep Drawn

Alloy Sheets Prepared by Commercial Manufacturer

≻5" x 10" > 225 μ m thick ➢ Prepared by commercial method – low C,O,N impurities ≻4 alloys tested ≻6 additional alloys ordered

Membrane Alloy & Catalyst Alloy Permeation Data

Effect of Temperature on Membrane Stability

Membrane Thickness

Model Development

- Transport resistance model
- Process model
- Integration into IGCC flow sheet
- Process Economics

Goal is to improve carbon capture, decrease cost of electricity, improve thermal efficiency, and ensure membrane performance and lifetime.

Eltron Research & Development

Membrane Fundamentals

Hydrogen Transport Resistance Model

- Mass transport from feed gas to feed side catalyst surface
- Dissociation of hydrogen on feed side catalyst surface
- Hydrogen transport through feed side catalyst layer
- Resistance at feed side catalyst-membrane interface
- Hydrogen transport through membrane
- Resistance at permeate side catalyst-membrane interface
- Hydrogen transport through permeate side catalyst
- Recombination/desorption of hydrogen on permeate side
- Mass transport of hydrogen into permeate stream

Experiments being performed to furnish data to validate model for improving membrane design and performance

HTM Model

Modeled as a subflowsheet of unit operations in Hysys

 $Flow_{H_2} = J_{H_2} A_{HTM}$ $J_{H_2} = \frac{P_0}{l} \exp\left(\frac{-E_A}{RT}\right) \left(P_{H_2, \text{Ret}} \frac{1}{2} - P_{H_2, Perm} \frac{1}{2}\right)$

Model parameters derived from Eltron membrane data

Pre-combustion CO₂ capture with membrane technology and warm gas cleaning

Economic Results Summary

CO ₂ Capture Method	None ¹	Pre-EltroncombustionWGCU &SelexolMembrane		∆ Selexol vs. Eltron WGCU & Membrane	
Coal Feed (tpd)	5,876	3,258	3,526	268	
Net Power (MW)	640	239	318	79	
HHV Efficiency	38.2%	27.4%	33.6%	6.2%	
% CO ₂ Captured	0%	91.3%	95.3%	4.0%	
Cost of Electricity (\$/MWh)	78.0	115.5	106	77.3 ²	
Plant Cost (\$/kW)	1,813	2,434	2,292	1,863 ²	

¹ NETL Report, "Cost and Performance Baseline for Fossil Energy Plants," May 2007

² Cost applicable only to the incremental net power produced

Future Work

Develop design basis for scale-up to 220 lb/day Process Development Unit (PDU)

 \checkmark Discussions initiated with host facilities

- Continue to work with commercial suppliers on manufacturing of full-size alloy membranes
 - Catalyst deposition
 - Testing/Evaluation
- Life testing
- Understand impacts of contaminants
 - ✓ Experimentally
 - ✓ Process design
- Improve techno-economic models
 - ✓ Process optimization
 - ✓ Guide research/scale-up studies

Summary

- Eltron is currently bringing together all aspects of membrane technology
 - Ability to test long term under expected operating conditions
 - ✓ Substrate alloys / manufacturing
 - ✓ Catalyst alloys / deposition
 - ✓ Tubular membrane geometry
 - ✓ Demonstration of economic performance
- Results obtained to date show that this system is on track to meet DOE targets for 2010/2015

Eltron Research & Development

Progress Towards DOE FutureGen Targets

Performance Criteria	2007	2010 Target	2015 Target	Current Eltron Membrane
Flux, SCFH/ ft ²	320	200	300	450
Operating Temperature, °C	380-440	300- 600	250- 500	250-440
Sulfur Tolerance (ppmv)	20 (prelim.)	2	20	20 (prelim.)
System Cost (\$/ft ²)	<200	500	<250	<200
∆P Operating Capability (psi)	1,000	400	800- 1000	1,000
Carbon monoxide tolerance	Yes	Yes	Yes	Yes
Hydrogen Purity (%)	>99.99	99.5	99.99	>99.99
Stability/Durability (years)	0.9	3	>5	0.9
Permeate Pressure (psi)	270	N/A	N/A	400