

# Analysis of Ethanol Reforming System Configurations

Brian James & Jeff Kalinoski 10 June 2008





3601 Wilson Boulevard, Suite 650 Arlington, VA 22201 (703) 243-3383 (703) 243-2724 [fax]



This presentation does not contain any proprietary, confidential, or otherwise restricted information

### **Overview**



#### Timeline

- Contract Period:
  - May 2007 to September 2008
  - 75% complete

#### **Barriers**

- Distributed H<sub>2</sub> Production from Renewable Liquids:
  - A: Reformer Capital Costs
  - B: Reformer Manufacturing

### **Budget**

- Total project funding: \$150k
- Funding for FY 2007: \$150k

### **DOE Cost Targets**

| Characteristic                           | 2006      | 2012      | 2017       |
|------------------------------------------|-----------|-----------|------------|
| System Efficiency                        | 70%       | 72%       | 65-75%     |
| Prod. Unit Capital<br>Cost (uninstalled) | \$1.4M    | \$1.0M    | \$600k     |
| Total H <sub>2</sub> Cost                | \$4.40/kg | \$3.80/kg | <\$3.00/kg |

### **Collaborations**

• Interaction/Data-Transfer between PNL, OSU and multiple DOE contractors (H<sub>2</sub>Gen, Pall Corp., Virent)





### Assess cost of H<sub>2</sub> from bio-derived liquids

- Distributed forecourt scale systems: 1500kgH<sub>2</sub>/day
- Emphasis on Ethanol
- Both "conventional" and "advanced" systems

### Reflect Recent Research

- Interact with DOE Labs and Contractors
- Researchers supply catalysts composition, performance, potential configurations
- Ground in reality but forward looking

### Output of work is:

- System/Configuration Definition
- Performance specification & optimization
- Capital cost estimation
- Projected hydrogen \$/kg

## Methodology





## **Ethanol Reforming Hierarchy**





### **Multiple Configurations Examined**



| Config.<br>Number | Fuel    | Temperature        | Key Elements                                                                             |  |  |
|-------------------|---------|--------------------|------------------------------------------------------------------------------------------|--|--|
| 1                 |         | High Tomp (000°C)  |                                                                                          |  |  |
| 2                 | NG      | High Temp. (900 C) | $SIVIR \rightarrow WGS \rightarrow PSR$                                                  |  |  |
| 14                |         | Med. Temp. (550°C) | Integrated Reformer/WGS/Membrane Separator                                               |  |  |
| 6                 | Ethanol |                    | $Pre\text{-}Reformer \to SMR \to WGS \to PSA$                                            |  |  |
| 11                |         | High Temp. (900°C) | $Pre-Reformer \to SMR \to WGS \to Membrane\ Separator$                                   |  |  |
| 12                |         |                    | $\label{eq:pre-Reformer} Pre-Reformer \to SMR \to Integrated \ WGS/Membrane \ Separator$ |  |  |
| 9                 |         | Med. Temp. (550°C) | Reformer (NPM Catalyst) $\rightarrow$ WGS $\rightarrow$ PSA                              |  |  |
| 15                |         |                    | Reformer (PM Catalyst) $\rightarrow$ WGS $\rightarrow$ PSA                               |  |  |
| 10                |         |                    | Reformer (NPM Catalyst) → Membrane Separator                                             |  |  |
| 13                |         |                    | Integrated Reformer/WGS/Membrane Separator                                               |  |  |

- Many configurations/variations are possible
- Arrows mark focus for today's presentation

#### System 06 High Temp. w/ Pre-Reformer & PSA



DIRECTED

**TECHNOLOGIES** 

INC

#### System 09 Med. Temp. w/ PSA





#### System 10 Med. Temp. w/ Membrane Separator





Capacity: 1,500 kg/day Ethanol Efficiency: 64.5% Pressure: ~20 bar **Overall Efficiency:** 61.2% Elec. Load: 2.209 kWe/kg H<sub>2</sub>

H, Recovery: 90% Capital Cost: \$800,344

### System 13a Med. Temp. w/ Intgr. Membrane Tubes



Capacity: 1,500 kg/dayEthanol Efficiency: 69.8%Pressure: ~20 barOverall Efficiency: 67.5%H2 Recovery: 90%Elec. Load: 2.064 kWe/kg H2Capital Cost: \$711,417

#### page 11

#### DIRECTED Kinetics Model Used to Determine Bed Sizes TECHNOLOGIES

**Reforming Reaction:** 

EtOH  
Consumption = 
$$C_1 k_0 \exp\left(-\frac{E_A}{RT}\right) (P_{C_2 H_5 OH})^{1.25} (P_{H_2 O})^{-0.215}$$
  
where

where

 $k_0 = 0.013 \text{ mol/(gcat·s·kPa^{1.07})}$ E<sub>4</sub> = 39.3 kJ/mol  $C_1$  = Derating Factor = 38%-49%

#### **Representative Data:**

| Steam/Ethanol Ratio<br>GHSV<br>Ethanol Conversion<br>Temperature<br>Catalyst | Precious<br>Metal<br>PNNL (King)<br>8:1<br>5,786/h for long life<br>99%+<br>550°C<br>2wt%Rh/<br>Ce <sub>0.8</sub> Zr0.2O2 | Non-Precious<br>Metal<br>OSU (Ozkan)<br>10:1<br>5,000/h<br>99%+<br>550°C<br>1%Ni-1%Cu-<br>10%Co/Ca <sub>0.1</sub> Ce <sub>0.9</sub> O <sub>1.9</sub> |  |  |  |  |
|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Exit Gas Composition:                                                        |                                                                                                                           |                                                                                                                                                      |  |  |  |  |
| H <sub>2</sub>                                                               | 71.12%                                                                                                                    | 71.50%                                                                                                                                               |  |  |  |  |
| CH₄                                                                          | 4.67%                                                                                                                     | 3.80%                                                                                                                                                |  |  |  |  |
| CO                                                                           | 5.38%                                                                                                                     | 4.10%                                                                                                                                                |  |  |  |  |
| CO <sub>2</sub>                                                              | 18.83%                                                                                                                    | 20.60%                                                                                                                                               |  |  |  |  |
| Ethylene                                                                     | 0%                                                                                                                        | 0%                                                                                                                                                   |  |  |  |  |
| Ethane                                                                       | 0%                                                                                                                        | 0%                                                                                                                                                   |  |  |  |  |

 From E. Orücü, F. Gökaliler, A. E. Aksoylu, Z. I. Önsan (2008) Ethanol Steam Reforming for Hydrogen Production Over Bimetallic Pt-*Ni/Al*<sub>2</sub>O<sub>3</sub>, J Catalysis Letters Vol. 120, No. 3-4, Jan. 2008, Springer Netherlands, pp 198-203

 Derating Factor selected based on PNNL (King et al) and OSU (Ozkan) data.

#### WGS Reaction:

CO **Consump** Rate

$$= C_2 \exp\left(-\frac{E_A}{RT}\right) [CO]^1$$

where  $E_{A} = 121.8 \text{ kJ/mol}$ 

### **DOE Tech. Targets for Dense Metallic Membranes**



| Flux Rate: | 2006 Status               | 2010 Target              | 2015 Target              |
|------------|---------------------------|--------------------------|--------------------------|
|            | >200 scfh/ft <sup>2</sup> | 250 scfh/ft <sup>2</sup> | 300 scfh/ft <sup>2</sup> |

Based on:

- 20 psi partial pressure difference
- 15 psig permeate minimum total pressure (preferably >50 psig) (assumed to be pure H<sub>2</sub>)

• 400°C

#### Sievert's Law

$$D = A \cdot \mathcal{G} \cdot (P_{\mathrm{H}_{2} \, \mathrm{Reformate}}^{0.5} - P_{\mathrm{H}_{2} \, \mathrm{Permeate}}^{0.5})$$

where

*D* is the hydrogen permeation rate in **scfh** 

 $\mathcal{P}$  is the permeability, in scfh/ft<sup>2</sup>/atm<sup>0.5</sup>

A is the membrane effective surface area in  $ft^2$ 

 $P_{\rm H_2}$  is the hydrogen partial pressure (reformate or permeate streams) in **atm** 

t is the thickness of the membrane in **ft** 

T is the membrane temperature in  $^{\circ}\mathbf{R}$ 

*R* is the ideal gas constant in **ft<sup>3</sup>-atm/°R/lb-mol** 

a, b are the empirical constants dependent on the material of the membrane

Therefore implied Permeability Technical Targets are:

| Permeability: | 2006 Status                                   | 2010 Target                                  | 2015 Target                      |
|---------------|-----------------------------------------------|----------------------------------------------|----------------------------------|
|               | >454 scfh/ft <sup>2</sup> /atm <sup>0.5</sup> | 567 scfh/ft <sup>2</sup> /atm <sup>0.5</sup> | >680 scfh/ft²/atm <sup>0.5</sup> |



### Modeling Stand-Alone Membrane Separators

#### Membrane Separation Unit Sizing Model







•1-D Differential Element Separation Model Created (Excel Based)

- No reaction chemistry
- Assumed 100% selectivity (i.e. metal membrane)

DIRECTED

TECHNOLOGIES

- Used to determine membrane area for stand-alone Membrane Separator
- Permeance based on 2010 DOE Targets

# Typical Parameters for a 1500kgH<sub>2</sub>/day Separator

| Inlet Presure                  | 20 atm                                       |
|--------------------------------|----------------------------------------------|
| Permate Pressure               | 1 atm                                        |
| Inlet Molar Flow               | 83 kgmol/h                                   |
| Inlet H2 Molar Fraction        | 41%                                          |
| Permeance                      | 567 scfh/ft <sup>2</sup> /atm <sup>0.5</sup> |
| Membrane Area Required         | 48 ft <sup>2</sup>                           |
| H2 Recovery                    | 90%                                          |
| Cost at \$1000/ft <sup>2</sup> | \$48,000                                     |

### **System Level Evaluation is Critical**



#### Comparison of EtOH Efficiency vs. Recovery for a Membrane Separator System



• Steam/Ethanol Ratio has a larger effect than H<sub>2</sub> Recovery

Other considerations:

- Peak membrane temperature ~500-550°C (for Pd-based membranes)
- Membrane H<sub>2</sub> flux increases with temperature
- Membrane area increases with Recovery and H<sub>2</sub> Dilution

### Impact of Integrated Membrane On Overall Catalyst Bed Size



#### Discrete Reactors (Reformer→WGS → PSA) (Sys 9)



- Near-complete EtOH conversion (99%+)
- But requires separate WGS Reactor and Gas Cleanup System
- Also good
  EtOH
  conversion
  Combines
- Reformer/WGS/ Membrane into single unit
- <1/4 the total bed volume

### **Two Reactor Configurations Examined**



#### **Tubular Reactor**

- Excellent heat transfer if small diameter tubes
- But small diam. tubes  $\rightarrow$  unwieldy # of tubes
- Configuration not amenable to membrane tubes

#### <u>Annular</u> <u>Heat Exchange Reactor (HER)</u>

- Simpler design fewer parts
- Amenable to membrane system integration
- ~25% lower cost than Tubular

#### Annular Design Selected for Design Studies







Figure 18: Heat exchange reformer (HER) with annular concentric catalyst bed (170).

[170] Topsoe HTCR Compact Hydrogen Units. Haldor Topsoe A/S. www.haldortopsoe. com (accessed Dec. 2004).

## **Key Assumptions and Observations**



- All Systems sized for 1,500 kgH<sub>2</sub>/day
- All catalyst systems assumed to have 5 year life
  - Precious Metal Catalysts have approx. shown multi-year life
  - Non-Precious Catalysts have shorter lifetimes

### • Membranes are assumed to operate with 1atm $H_2$ permeate pressure

- Cost of H<sub>2</sub> Compression is significant (~\$200k per H2A projection)
- Compressor costs mostly off-sets capital cost gain of integrated reformer

#### DOE 2010 Membrane Performance and Cost Targets Assumed

- Flux: 250 scfh/ft<sup>2</sup> (at prescribed conditions)
- Module Cost: \$1,000/ft<sup>2</sup>

#### H2A Forecourt Spreadsheet Used for all \$/kg projections

Version 26: February 2008

### Steam-to-Carbon and Steam-to-Ethanol Ratios cause confusion

- Because ethanol is  $C_2H_5OH$  there is a 2x difference in the ratio
- S/C=4 is the same as S/Ethanol=8





| Case<br>#  | Description                                                                                                                                                        | Ethanol<br>Efficiency<br>(H <sub>2</sub> LHV/<br>Ethanol LHV) | Uninstalled<br>Capital<br>Cost<br>\$                          | Production<br>Cost<br>\$/kg | Total Cost<br>(Production/<br>Storage/Disp.)<br>\$/kg |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|-----------------------------|-------------------------------------------------------|--|
|            | Baseline EtOH (High Temperature, Pre-Reformer)                                                                                                                     |                                                               |                                                               |                             |                                                       |  |
| 6          | - with PSA (75% H2 Recovery)                                                                                                                                       | 68.1%                                                         | \$830k                                                        | \$3.02/kg                   | \$5.04                                                |  |
| 11         | - with Membrane Separator<br>(90% H2 Recovery)                                                                                                                     | 74.9%                                                         | \$909k                                                        | \$2.96/kg                   | \$4.98/kg                                             |  |
|            | Medium Temperature EtOH       PM= Precious Metal Catalyst         (Steam/EtOH = 8 (PM) /10 (NPM) unless otherwise specified)       PM= Non-Precious Metal Catalyst |                                                               |                                                               |                             |                                                       |  |
| 9<br>15    | - with PSA (75% H2 Recovery)                                                                                                                                       | 67.3% (NPM)<br>67.5% (PM)                                     | \$673k<br>\$839k                                              | \$2.95/kg<br>\$3.04/kg      | \$4.97/kg<br>\$5.06/kg                                |  |
| 10<br>17   | - with Membr. Sep.(90% Recov.)                                                                                                                                     | 64.5% (NPM)<br>66.8% (PM)                                     | \$800k<br>\$905k                                              | \$3.28/kg<br>\$3.25/kg      | \$5.30/kg<br>\$5.27/kg                                |  |
| 13a<br>13d | - with Integrated<br>Reformer/WGS/Membrane<br>System                                                                                                               | 69.8% (NPM)<br>(Steam/Eth.= 8)<br>67.6% (PM)                  | \$711k<br>(\$10/kg catalyst)<br>\$929k<br>(\$400/kg catalyst) | \$3.02/kg<br>\$3.23/kg      | \$5.04/kg<br>\$5.25/kg                                |  |
| 13b        | - Future Integrated<br>Reformer/WGS/Membrane<br>System                                                                                                             | <b>79.4%</b><br>(NPM)<br>(Steam/Eth.= 6)                      | <b>\$608k</b><br>(\$10/kg catalyst)                           | \$2.67/kg                   | \$4.69/kg                                             |  |

## Summary



- Medium & High temperature EtOH reforming are efficiency competitive
- Alternative configurations to tubular designs may lower capital cost
  - but must have adequate heat transfer
- Low Steam/Ethanol ratios favor high system efficiency
  - but must not coke
- Methane in reformer exhaust should be minimized
  - each CH<sub>4</sub> in exhaust robs 4H<sub>2</sub> from product
  - > Methane make is key catalyst evaluation metric

•Catalyst cost is a key cost component. Worthwhile to explore reduced/non precious metal catalysts

but must have multi-year lifetimes

• 90% H<sub>2</sub> Recovery in a membrane separator is feasible (at 20atm/1atm)

• Membrane systems (with high recovery) can make significant efficiency improvements (up to 5%)

## **Summary (continued)**



- Mid 70's % LHV Ethanol efficiencies are possible
- H<sub>2</sub> Production Cost of <\$3/kg is feasible
- But forecourt compression/storage/dispensing is currently very costly (\$2/kgH<sub>2</sub>)

> DOE targets for compression/storage/dispensing need to be met to achieve overall  $H_2$  cost target of <\$3/kg

- Integrated reformers have the advantages of:
  - reduced operating temperature
  - lower capital cost
  - lower H<sub>2</sub> \$/kg

While cost & efficiency advantage is not decisive, integrated systems are compact & simpler: important for forecourt installation

•Aqueous phase reformers using low cost feedstocks offer a potential pathway to low H<sub>2</sub> cost. Advantages include:

- low operating temperature
- low capital cost
- variety of low cost feedstocks
- Cost/Performance analysis is underway



- Complete System Comparisons
- Examine Aqueous Reforming System
- Write Final Report