

Cost-Effective Method for Producing Self-Supporting Pd Alloy Membrane for Use in the Efficient Production of Coal-derived Hydrogen

DE-FC26 03NT41849

Kent Coulter, Ph.D. Southwest Research Institute[®] June 13, 2008

Project ID # PD40

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start: Sep. 09, 2003
- Project end: March 31, 2008
- Percent complete: 100%

Budget

- Total project funding (3 year)
 - DOE share: \$775,771
 - Contractor share: \$194,200
- Funding received in FY07
 - \$0
- Funding for FY08
 - \$0

Barriers

- Barriers addressed
 - N. Defects (high yield, large area)
 - O. Selectivity (>99.9%)
 - Q. Flux (>100 scth/ft²)
 - S. Cost (<\$1500/ft²)

Partners

- Colorado School of Mines (Way)
 - H₂ permeation measurements
 - Membrane characterization
- ldaTech (Pledger)
 - Large-scale testing
 - Module demonstration
 - Sealing

Objectives

Overall DOE Goal: Develop technologies that effectively and economically separate hydrogen from mixed gas streams that would be produced by coal gasification

- Develop a process methodology for the cost-effective manufacturing of thin, dense, self-supporting palladium (Pd) alloy membranes for hydrogen separation from the mixed gas streams of coal gasification processes,
- Reduce Pd membrane thickness by >50% over current state-of-art, and show potential to meet DOE 2010 technical targets.
- Demonstrate viability of using large-area vacuum processing to "engineer" a membrane microstructure that optimizes hydrogen permeability, separation efficiency, and lifetime,
- Demonstrate efficacy of large-batch and/or continuous roll-to-roll manufacturing of membrane material with performance and yields within predefined tolerance limits
- Demonstrate separation efficiency of thin palladium membrane in commercial-type fuel processor using mixed gas streams.

Deposition

Sample Number	Date	Maker Pd %	EDAX Pd %	Max Flux @ 400C & 20psi [cm ³ /cm ^{2.} min]	CSM Thickness [microns]	Source	Maker Thickness	Permeance @ 400C [cm ³ (STP)/cm ² ·s ⁻ cmHg ^{0.5}]	Permeability @ 400C [cm ³ (STP) [.] cm/cm ^{2.} s [.] cmHg ^{0.5}]
051206#1	7/25/2002		57.00	17.9	8.80	SEM		5.98E-02	5.26E-05
051206#1	7/25/2002		57.00	30	8.80	SEM		1.00E-01	8.83E-05
072806#1	8/6/2002	62.00		N/A		SwRI	4.40	N/A	N/A
072806#1	8/27/2002	62.00		22.21	4.40	SwRI	4.40	5.14E-02	2.26E-05
073106#1	8/6/2002	62.00		N/A		SwRI	4.40	N/A	N/A
073106#1	8/7/2002	62.00		N/A		SwRI	4.40	N/A	N/A
073106#1	8/7/2002	62.00		N/A		SwRI	4.40	N/A	N/A
073106#1	9/10/2002	62.00		19.3	4.40	SwRI	4.40	6.46E-02	2.84E-05

Membranes

Membrane Composition

Foil Samples Provided

- CSM & IdaTech Program partners
- Steve Paglieri Los Alamos National Lab
 - No data
- Joe Schwartz Praxair
 - No data
- Rob Hui NRC, Canada
 - No data

- Gohkan Alptekin TDA Research
 - 8.83 x 10-5 cm3(STP)cm/cm2.s,cmHg0.5 @ 400°C and 50 psig H2
- Dave Edlund Protonex
 - 100 SCFH/ft2 @ 400°C and 50 psig H2

Measured H₂ Flux Has **Surpassed Program Goals**

- Best performance data @ 400°C shown for a 2.5 µm Pd-Cu alloy foil, area = 2.6 cm2Volumetric Flux H₂ (cm³ cm⁻² min⁻¹)
 - Pure H2 permeability =
 - 8 •10⁻⁵ cm³•cm/cm²•s•cmHg^{0.5}
 - H_2 Flux = 124 cm³/cm²•min = 242 SCFH/ft²
 - Feed pressure = 20 psig

Exceeds DOE Hydrogen Program and 2010 DOE Fossil Energy targets

Time (hours)

Module Development and Testing at IdaTech

- Measured H₂ flux of 420 SCFH/ft² (400°C and 100 psig) on smaller samples provided by SwRI.
- Investigating gasketing arrangements to reliably seal thin membranes.
- Full-scale module test delayed
- More than a dozen full-size prototype membranes have been delivered to IdaTech

Membrane Assembly

- Membrane performance confirmed
- Issues
 - Membrane stress
 - Brittleness
 - Flatness
 - Pinholes
- Annealing reduces stress and brittleness but may cause pinhole formation
- Attempts to fabricate a membrane module failed due to membrane mechanical failure during assembly

Cost Projections

Total Cost/ft² = (F + L + E) / (P*S*1.75 x10⁵) + R

- F is the equipment depreciation,
- L is the fully burdened labor costs
- E is the cost of utilities and maintenance,
- P is the throughput per minute,
- S is the # of 8 hour shifts per day
- R is the raw material cost

- \$35/ft2 of Pd
- Total final cost \$45.50/ft2

Areas for Future Work

- Membrane fabrication
 - Fine tune annealing process
 - Eliminate surface defects
 - Increase membrane area
 - Study optimum thickness with respect to durability grain growth and impact on durability

Modularization

- Sealing; Gasket, Welding, Brazing, Hybrid
- Wetted component material selection
- Optimize footprint
- Membrane support
- Cost analysis on module not just membrane
- Design for cascading modules together
- Long term testing

Summary

Year 1

- Task 1: Magnetron Sputter Deposition of Pd-Cu Alloys on Small Samples
- Task 2: Development of Backing Removal Techniques
- Task 3: Materials Characterization of Sputtered Pd-alloy Membranes
- Task 4: Pressure and Purification Testing
- Task 5: Prototype Module Design

Year 2

- Task 1: Fabrication of Larger Area Membranes
- Task 2: Optimization of Membrane Composition/Microstructure
- Task 3: Refinement and Down-selection of Backing Removal Methods
- Task 4: Production of Membranes at least 75 in² in Area
- Task 5: Prototype Module Construction

Year 3

- Task 1: Final Optimization/Selection of Membrane Alloy Composition
- Task 2: Pressure and Purification Testing Pilot-Scale Membranes
- Task 3: Prototype Module Final Assembly and Testing
- Task 4: Develop Cost Estimates for Production of Pd Membranes

High Permeability Ternary Palladium Alloy Membranes with Improved Sulfur and Halide Tolerance:

DE-FC26-07NT43056

Objective: To utilize a iterative modeling, rapid fabrication, and testing approach to develop and demonstrate an ultra-thin (<5 micron) durable ternary Pd-alloy membrane with excellent resistance to sulfur and halogen attack.

Overview

Timeline

- Project start: May 02, 2007
- Project end: May 01, 2010
- Percent complete: 30%

Budget

- Total project funding
 - DOE share: \$1,199,049
 - Contractor share: \$299,763
- Year 1(2008)
 - DOE share: \$354,490
 - Contractor share: \$88,623

Barriers

- Barriers addressed
 - G. Hydrogen Embrittlement
 - I. Poisoning of Surfaces
 - Q. Impurities in Hydrogen

Scope of Work

- 1) Materials modelling and composition selection:
- 2) Fabrication of ternary alloy membranes:
- 3) Membrane testing and evaluation:

Collaborators

<u>Craig Engel</u>, <u>Miguel Esquivel</u>, *Roger Wiseman,* Surface Engineering

David Sholl, Professor, Chemical Engineering and Materials Science

<u>J. Douglas Way</u>, Professor, Chemical Engineering Department,

Bill Pledger, P.E., Senior Vice President, Chief Engineer, IdaTech

Gohkan Alptekin, Principal Engineer

Milestones

Phase I (Year 1)

- *Milestone 1.1*: Use DFT methods to predict H_2 flux through $Pd_{96}M_4$ for M = Ni, Rh, Pt, Nb, Ta, V, Mg and Y. Use same methods to predict H_2 flux $Pd_{74}Cu_{22}M_4$ for at least 3 of the same M.
- Milestone 1.2: Screening of initial set (≤ 6) of ternary alloys by pure gas (H₂ and N₂) permeation experiments.

Phase II (Year 2)

- *Milestone 2.1*: Fabricate a minimum of 20 membrane specimens with different copper concentrations based on CMU hydrogen transport predictions for the 2-3 most promising ternary element additions.
- *Milestone 2.6*: Complete 4-5 preliminary tests membrane samples at TDA and IdaTech with clean Syngas and single impurity additions of H₂S and COS.

Phase III (Year 3)

- *Milestone 3.1*: Produce a minimum of 5 sq. ft. of optimized membrane material for use at CSM and TDA and for independent third-party evaluation by IdaTech.
- *Milestone 3.2*: CSM will complete mixture permeation testing with H_2/CO and H_2/H_2S binary mixtures with best three samples from the final optimization study.

Given: Alloy phase diagram

Understand and predict intrinsic membrane properties

Hierarchial Approach

Use **quantum chemical methods** (Density Functional Theory) to calculate atomic level information: i.e. hydrogen binding energies, energy barriers, etc.

Input for coarse grained lattice gas models to calculate long-range transport properties

Predict macroscopic properties that can be directly compared with experimental data

Permeability: Binary Alloys

Semidey-Flecha and Sholl, J. Chem. Phys., in press

All results are normalized with respect to pure Pd

1. Gryaznov, V., Sep. Purif. Methods, **2000**, 29(2), 171.

H Diffusivity in Alloys

All results are normalized with respect to pure Pd

Enhanced diffusivity in PdCuAg relative to PdCu suggests Ag may be a useful "additive" to PdCu

Binary & Ternary Membranes

	Elementa	l Composit	ion (wt%)	Measured	
Run #	Pd	Cu	Ag	Thickness	Comments
Pd-21	100.0	0.0	0.0	5,201A	tooling run for tk/uniformity
Pd-22	95.3	4.7	0.0	7 um	1st test Pd/Cu 5%, sample sent for EDS, full release mod tens
Pd-23	86.0	14.0	0.0	5.3 um	full release/mildly tensile/4 pinhole. Sample toEDS/thickness
Pd-24	90.8	0.0	9.2	5.6 um	full release/mildly tensile/10+ pinholes. Sample toEDS/thickness
Pd-25	78.3	0.0	21.7	6.2 um	full release/slightly tensile, 1 pinhole, delicate easy to tear
Pd-26	100.0	0.0	0.0	10,000A	test for thickness uniform
Pd-27	100.0	0.0	0.0	na	run to clean target, Cu and Ag chips removed
Pd-28	68.3	27.5	4.2	5.3 um	Pd target with 72 Cu chips/11 Ag chips

The influence of reciprocal thickness on the pure hydrogen flux at 400°C and 32 psia hydrogen feed pressure

The development of flux as a function of time at 400°C and 20 psi feed pressure

Comparing Ternary and Binary Films

Two foils tested under identical conditions $Pd_{80}Cu_{17}Ag_4$ and $Pd_{86}Cu_{14}$ (wt.%)

T (°C)	H_2/N_2 S	Permeability Ratio	
	Binary	Ternary	
250	45	> 640	1.24
350	74	>1320	1.22
400	134	>1790	1.21

Adding a small amount of Ag appears to improve permeability of binary alloy, although observed increase is less dramatic than predicted by theory for similar compositions

Theory suggests that permeability ratio will increase as T is lowered – this is not observed in the current experiments

Future Work

The following milestones will be addressed.

- A minimum of 20 membrane specimens with different copper concentrations based on GT hydrogen transport predictions for the 2-3 most promising ternary elements will be fabricated.
- Four to five preliminary membrane samples will be tested at TDA and IdaTech with clean Syngas and single impurity additions of H₂S and COs.

Specifics

• Calculations in progress: Pd-Cu-Ni and Pd-Cu-Pt

- planned: Pd-Ag-Au and Pd-Ag-Pt

• Further experimental testing with thicker foils (10-15 mm) will be used to characterize ternary foils

Summary (Year 1)

- A rigorous strategy for predicting H permeability through ternary alloys using first-principles calculations has been developed for
 - Pd-Cu-Ag and Pd-Cu-Au
 - Calculations in progress: Pd-Cu-Ni and Pd-Cu-Pt
- Thin (5-10 micron) membranes of Pd60/Cu40, Pd96M4 and Pd74Cu22Ag4 have been coated and these samples provided to CSM for structural and composition measurements and permeation testing
- Pure gas hydrogen and nitrogen permeation rates have been determined at CSM for a range of pressure differentials (5 to 150 psig feed pressure) and temperatures ranging from 200 to 500°C.
- Freestanding alloy films of Pd, Pd-Cu, and Pd-Cu-Ag show

 Pure Pd and Pd-Cu alloys give permeabilities in reasonable agreement with prior literature

 Preliminary tests indicate that adding ~4 wt.% Ag improves permeability of Pd-Cu by ~20-25%.

• Program is on-schedule and on budget.

Project Summary

Relevance

 Robust, high efficiency methods to extract pure hydrogen from coal gas and other sources is critical to the development of a hydrogen economy

Approach

 Use a novel, scalable vacuum deposition method to fabricate free standing Pd alloy hydrogen separation membranes and evaluate their performance

Accomplishments

 Produced some of the thinnest (3 um), largest area (110 in2), highest performance separation membranes reported

Summary (Cont'd)

	2005 DOE Target	2010 DOE Target	SwRI
Flux (scfh/ft²)	100	200	242
Cost (\$/ft²)	1500	1000	1500
Hydrogen Quality	99.9	99.95	99.95
DP Operating Capability	200	400	100

Collaborations

 Commercial partner in IdaTech, long track record testing hydrogen membranes at CSM, modeling with Georgia Tech

Future R&D

Test under more aggressive conditions, develop new ternary alloy formulations with increased durability