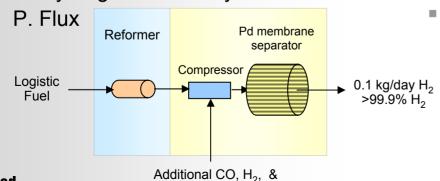
Experimental Demonstration of Advanced Palladium Membrane Separators for Central High-Purity Hydrogen Production

(DE-FC26-07NT43055)

S.C. Emerson, J.T. Costello, Z. Dardas, T. Hale, R.R. Hebert, G.C. Marigliani, S.M. Opalka, Y. She, & T.H. Vanderspurt

United Technologies Research Center
13 June 2008


Project ID #PD41

This document does not contain any proprietary, confidential, or otherwise restricted information.

Overview & Objectives

- Timeline
 - 6/15/07 to 6/14/09
 - 42% complete
- Budget
 - \$1497k (\$1198k from DOE)
- Partners
 - Power+Energy
 - Membrane separator fabrication
 - Metal Hydride Technologies
 - H₂ solubility measurements
- Barriers
 - K. Durability
 - L. Impurities
 - N. Hydrogen Selectivity

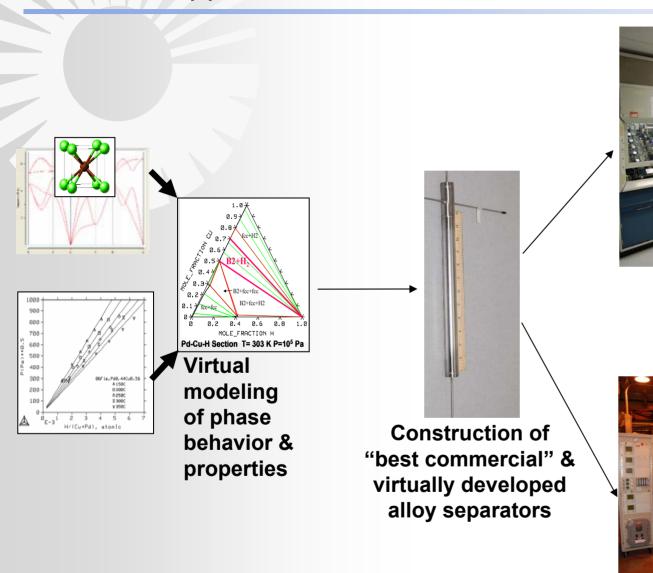
poisons (e.g., H₂S)

- Objectives
 - Confirm the high stability and resistance of a PdCu trimetallic alloy to carbon and carbide formation and, in addition, resistance to sulfur, halides, and ammonia
 - Develop a sulfur, halide, and ammonia resistant alloy membrane with a projected hydrogen permeance of 25 m³m-²atm-0.5h-1 at 400 °C and capable of operating at pressures of 12.1 MPa (~120 atm, 1750 psia)
 - Construct and experimentally validate the performance of 0.1 kg/day H₂ PdCu trimetallic alloy membrane separators at feed pressures of 2 MPa (290 psia) in the presence of H₂S, NH₃, and HCl

DE-FC26-07NT43055 Project Status Scorecard

P+E & UTRC allov separators can meet or exceed DOE targets

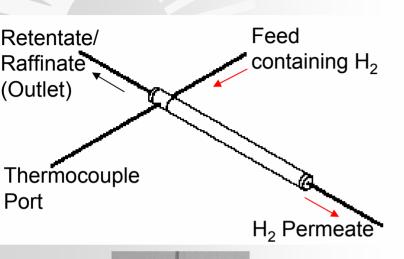
Metric	2010 DOE Target	Current Project Status	Notes	
Flux rate	200–250 ft ³ ft ⁻² h ⁻¹	525 ft ³ ft ⁻² h ⁻¹ (UTRC alloy prediction) 120 ft ³ ft ⁻² h ⁻¹ (P+E alloy, 400 °C) 252 ft ³ ft ⁻² h ⁻¹ (P+E, 530 °C)	 Alloy modeling predicts permeabilities much greater than PdCu (fcc) alloys P+E alloy can exceed DOE target at temperatures ≈>480°C 	
Impurity tolerance	20 ppmv Sulfur CO/Coke tolerant	5 ppmv H ₂ S (P+E alloy) 11 ppmv NH ₃ (P+E alloy) CO/Coke tolerant	 P+E alloy tested subscale up to 200 hours at UTRC with no degradation P+E demonstrated 800 h operation with 100 ppmv H₂S Plan to test with >40 ppmv H₂S, HCl; and 10 ppmv NH₃ 	
Hydrogen purity	99.5%	99.9999%	 P+E manufacturing design and manufacturing ensures no leaks CO < 1 ppm, S < 15 ppbv desired for fuel cell applications 	
∆P and T operating capability	Up to 400 psi ΔP 300–600 °C	290 psid 350 °C – 475 °C (UTRC alloy) 350 °C – 600 °C (P+E alloy)	 Facilities & current separator design limited to 20 atm testing 	
Cost	100–1000 \$/ft²	137–600 \$/ft² initial estimate	Based on initial estimate of \$5/scfh H ₂	
Durability	3 years	200 h (P+E alloy at UTRC)	P+E proven more than 2 years operationPlanned demonstration up to 2000 h	


Milestone Schedule (DE-FC26-07NT43055)

Project is on track to meet milestones

		Task Completion Date				
Task	Project Milestone	Planned Start	Planned End	Percent		
#				Complete		
1	Complete initial technical and economic mod-	June 15, 2007	Dec. 31, 2007	100%		
	eling.					
2	Complete advanced membrane property simu-	June 15, 2007	Dec. 31, 2007	100%		
	lations by atomistic and thermodynamic mod-					
	eling calculations.					
3	Complete the design and construction of mem-	June 15, 2007	May 30, 2008	83%		
	brane separators using sulfur resistant palla-					
	dium alloy and membrane separators using Pd-					
	CuTM.					
4	Complete hydrogen solubility tests using vari-	Mar. 15, 2008	June 30, 2008	0%		
	ous alloys for six-to-twelve separators, and pre-					
	dict hydrogen permeability performance.					
5.2	Complete testing of "best of class" separators.	Mar. 15, 2008	Sep. 30, 2008	0%		
5.3	Complete evaluation of advanced PdCuTM	June 15, 2008	April 30, 2009	0%		
	separator units.					
6	Complete the revised technical and economic	Dec. 1, 2008	June 1, 2009	0%		
	modeling.					

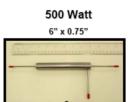
Technical Approach

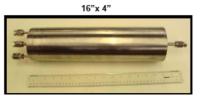


Low pressure laboratory screening: quantify performance

High pressure screening: quantify durability & poison resistance

Power+Energy Membrane Separators


Research Center


- Robust, scalable commercial design
- Design minimizes external mass transfer resistances
- Tubular design allows for membrane growth & leak free sealing
- Ten (10) separators delivered by P+E
 - Five (5) with P+E PdCu alloy
 - Five (5) with UTRC alloy
- •Two (2) additional separators to be delivered mid-year

High Capacity 1300 slpm Modular H₂ Purifier System

50 kWatt

echnologies

Laboratory Screening Rig (≤6 atm)

- Steam generator for H₂O addition to gas mixture
- Operation from 1–6 atm (absolute)
- Furnace capable of temperatures 300–650 °C
- Capable of simulating different gas compositions (CO, H₂, CO₂, N₂) from cylinders
 and house H₂
- Addition of poisons from gas cylinders or water supply
- Computer automated testing plans

Laboratory Screening Tests

Quantify separator permeability & effects of major gas species

Permeability
$$J = \underbrace{\frac{Q_{\rm eff}}{l} \left(P_1^{0.5} - P_2^{0.5}\right)}_{\text{Permeance}}$$
 Flux Permeance Hydrogen driving force

Effective Permeability Neglecting External Mass Transfer Resistance

$$Q_{\text{eff}} = \frac{aQ_0}{1 + \sum K_i p_i}$$

$$= \frac{aQ_{H_2}}{1 + K_{COPCO} + K_{CO_2} p_{CO_2} + K_{H_2O} p_{H_2O} + K_{N_2} p_{N_2}}$$

Experimental Objectives

- Obtain separators' permeability as a function of temperature with pure H₂ (Q_{H2})
- Quantify the effect of different non-poison gas species on H₂ permeability
- Determine adsorption coefficients (K_i) for each significant gas
 species

Pressurized Reformate Testing Rig (>10 atm)

Rig is under construction. Reformer capability enabled; fully operational May.

Emissions Cart (Gas conditioning & analysis)

Test area (Reformer, Furnace, Steam Generation, & Membrane)

Real-time Controls & Data Acquisition

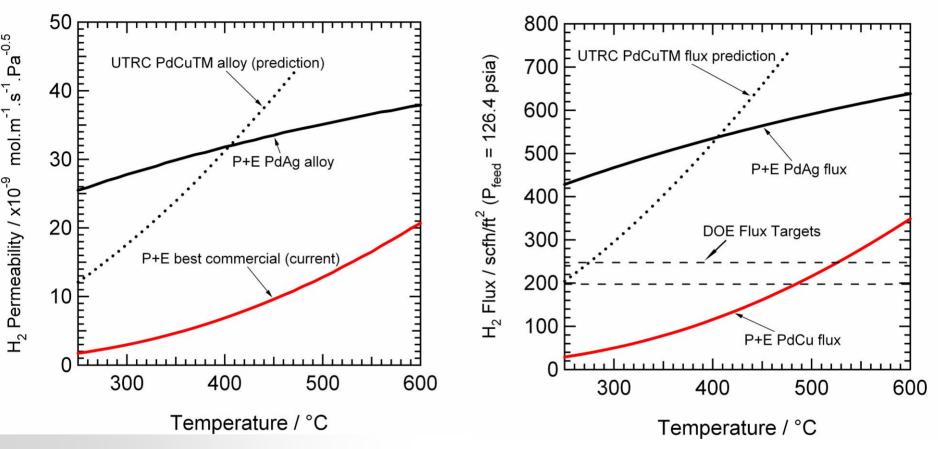
Process Controls
Cabinet

Test Configuration

High Pressure Tests on Real Reformate

Quantify separator durability & effects of poisons

Effective Permeability Neglecting External Mass Transfer Resistance


Experimental Objectives

- Quantify effect of three poisons on separators' H₂ permeability
- Operate separators off of "real" gas generated from diesel reformer
- Evaluate 500-h durability of separators
- Downselect best separator alloy for longer durability testing (2000 h)

Hydrogen Flux/Permeability for Different Alloys

Commercial P+E alloy separator can satisfy DOE's membrane requirements

- Modeling projections for UTRC PdCu ternary alloy satisfy DOE flux targets at all operating temperatures
- P+E commercial PdCu alloy meets DOE targets above 480 °C

Research Center

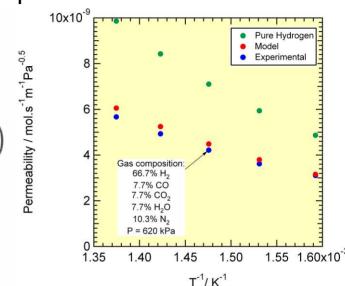
Preliminary Effect of Major Gas Species on PdCu Separators

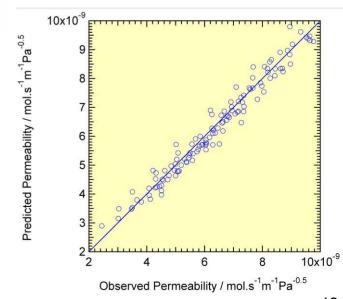
Gas species compete reversibly with H₂; CO adsorption most dominant

Preliminary fcc permeability results

$$Q_{eff} = \frac{Q_{H_2}}{1 + K_{CO}p_{CO} + K_{CO_2}p_{CO_2} + K_{H_2O}p_{H_2O} + K_{N_2}p_{N_2}}$$

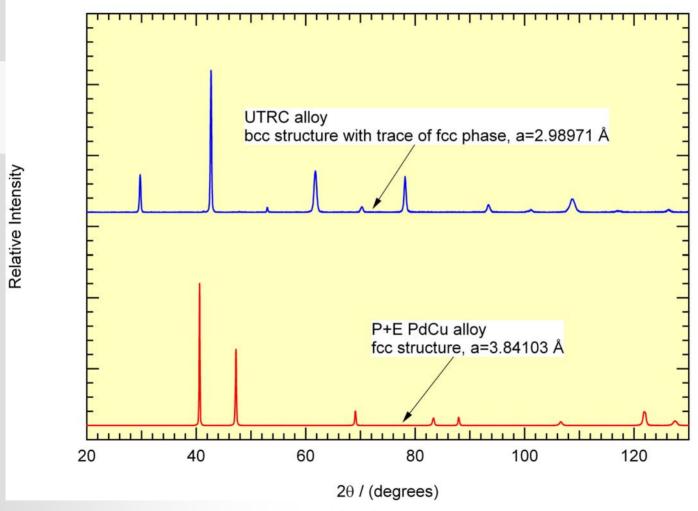
$$Q_{H_2} = exp\left(-18.795 + 4.8187\left(1 - \frac{673.15 \text{ K}}{T}\right)\right) = 8.5 \times 10^{-7}exp\left(\frac{-26968}{RT}\right)$$


$$K_{CO} = exp\left((-11.831 \pm 0.115) + ln\frac{T}{673.15 \text{ K}}\right) = 1.08 \times 10^{-8}T$$


$$K_{CO_2} = exp\left((-13.134 \pm 0.223) + ln\frac{T}{673.15 \text{ K}}\right) = 2.94 \times 10^{-9}T$$

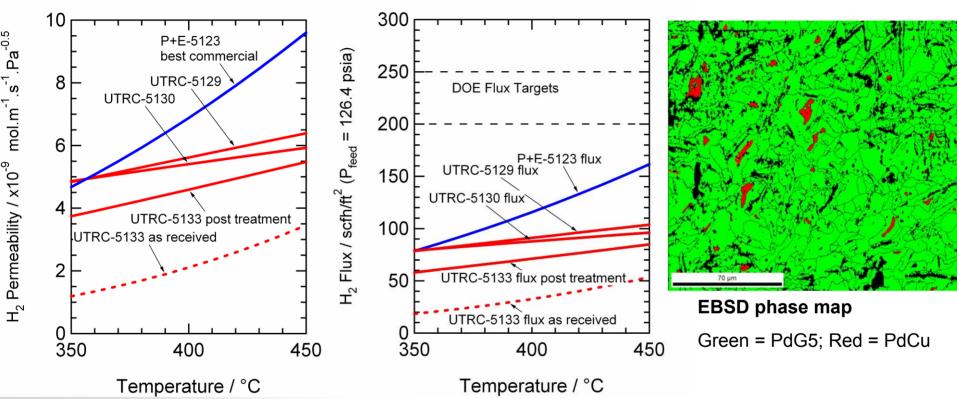
$$K_{N_2} = exp\left((-13.551 \pm 0.111) + ln\frac{T}{673.15 \text{ K}}\right) = 1.94 \times 10^{-9}T$$

$$K_{H_2O} = exp\left((-13.6 \pm 0.156) + ln\frac{T}{673.15 \text{ K}}\right) = 1.84 \times 10^{-9}T$$


- T= 353 °C 455 °C; P = 203 kPa 620 kPa (29.4 89.9 psia)
- Pure H₂ tests
- Mixtures H₂ –N₂, H₂ –CO–H₂O, H₂ –CO₂–H₂O, H₂–H₂O
- Weak temperature dependence on adsorption over experimental range (≈100 °C)
 - Heats of adsorption statistically insignificant
 - Linear temperature dependency describes data
- Model agreement within 5.2% on validation mixture composition
 - 66.7% H₂, 7.7% CO, 7.7% CO₂, 7.7%H₂O, 10.3% N₂

X-ray Diffraction Patterns of Alloy Tubes

Partial confirmation of modeling predictions on UTRC alloy

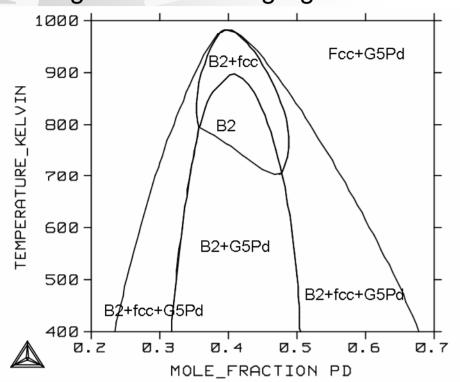

- Lattice parameters are within 1.7% of atomistic modeling predictions
- PdCu bcc phase formed in UTRC alloy as predicted

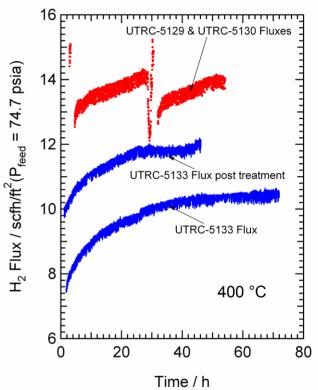
United Technologies

Research Center

Permeability of UTRC Alloy Separators Less Than Expected

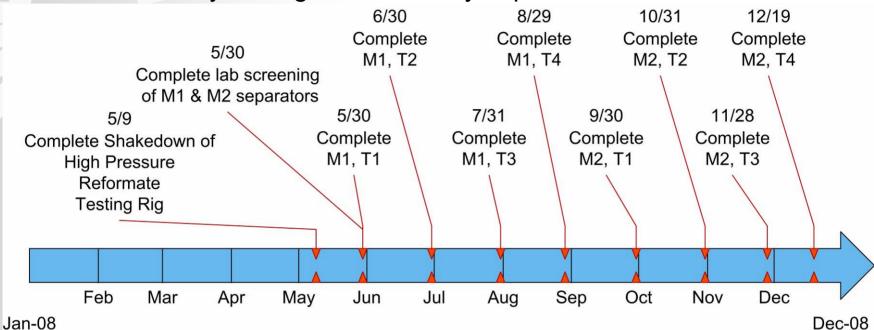
Characterization indicates presence of binary alloy on surface




- Electron Backscatter Diffraction (EBSD) on individual tube indicates presence of binary Pd alloy covering surface of membrane
- Surface alloy layer 500 Å 700 Å thick by microprobe analysis
- Heat treatments to desegregate/homogenize can improve membrane

Removal of Low Permeability Binary by Thermal Treatment

Homogenization/Desegregation work in progress



- UTRC alloy contains 47 at% Pd, targeting B2 phase
- Surface binary alloy between Pd & G5 element exists at low and high temperatures
- Binary could be formed during initial melt or during separator construction
- Heat treatments & quenching improves performance
- Etching may be necessary to remove surface resistance

United Technologies

Future Work

Focus on P+E alloy testing & UTRC alloy improvements

- Each reformate test will nominally be 500 h
- Nomenclature
 - M1 = P+E alloy; M2 = UTRC alloy
 - T1: Reformate with baseline sulfur in fuel
 - T2: Reformate plus H₂S (<100 ppm H₂S)
 - T3: Reformate plus NH₃ (<15 ppm NH₃)
 - T4: Reformate plus HCI (<100 ppm HCI)</p>
- Follow-on tests (end 2008 to mid 2009)
 - Test with a reduced steam to carbon ratio for 500 h
- United = 2000 h durability demonstration with poisons Technologies Research Center

Project Summary

- Constructed ten (10) commercially manufactured separators for evaluation
- Evaluated performance of first fcc PdCu separator
 - Quantified effect of CO, CO₂, N₂, and H₂O on H₂ permeability
 - Commercial unit can meet DOE flux targets for T>480 °C
- Produced five (5) separators with UTRC ternary composition
 - Phase segregation occurred on outer surface of membrane
 - Work in progress to improve current separator performance
- Opportunity to improve on UTRC alloy separator performance
 - Construction of two additional separators
- Higher pressure experiments using poison-doped reformate to be conducted this year
 - Quantify effect of H₂S, HCl, and NH₃ on H₂ permeability

Acknowledgments

- United Technologies Research Center
 - Testing: John Costello, Tom Hale, Robert Hebert, Gayle Marigliani, Jeffrey Walker, & Ying She
 - Atomistic Modeling: Susanne Opalka
 - Characterization: Jeff Covington, Bruce Laube, & C. Barila
 - Resources: Zissis Dardas, Dan Pfau, & Craig Walker
- Power+Energy
 - Albert Stubbmann & Peter Bossard
- Metal Hydride Technologies
 - Ted Flanagan
- U.S. Department of Energy
 - Arun Bose & Daniel Cicero

