

... for a brighter future

A U.S. Department of Energy laboratory managed by The University of Chicago

Pressurized Steam Reforming of Bio-Derived Liquids for Distributed Hydrogen Production

Sheldon H.D. Lee, Dennis Papadias, Shabbir Ahmed Argonne National Laboratory Presented at: 2008 Hydrogen Program Annual Merit Review Arlington, VA, June 9-13, 2008

DOE Hydrogen Program

Project ID: PD4

This presentation does not contain any proprietary, confidential, or otherwise restricted material

Overview

Timeline

- Start FY05
- On-hold FY06
- Continued: FY07, FY08
- End: Open

Barriers

- (A) Fuel Processor Capital Costs
- (E) Greenhouse Gas Emissions
- (H) System Efficiency

Budget

FY08: 400KTotal: 825K (3 years)

Partners / Interactions

- Other Argonne divisions
- Interactions: REB Research and Consulting

Rationale and Objective

Rationale

- Steam reforming of liquid fuels at high pressures can reduce hydrogen compression costs
 - Much less energy is needed to pressurize liquids (fuel and water) than compressing gases (reformate or H₂)
- High pressure reforming is advantageous for subsequent separations and hydrogen purification

Objective

- Develop a distributed hydrogen production process
 - From hydrated ethanol and other bio-derived liquids
 - Using a pressurized steam reforming reactor
 - To develop an efficient hydrogen production / purification process by reducing the H_2 compression penalty

DOE FY12 Efficiency Cost Target	72%
DOE FY12 Cost Target	\$3.8 / gge

Milestones

July 2007	Complete catalyst performance studies in high pressure microreactor
September 2007	Model micro-reactor to evaluate membrane reactor performance
April 2008	Go / No-Go on High Pressure Ethanol Reforming Using H ₂ Extraction
September 2008	Define suitable reforming conditions for alternative bio-liquid
September 2008	Initiate tests in alternative (O_2 or CO_2) membrane reactor

Approach

- Steam reform bio-derived liquids at high pressure
 - Define conditions suitable for reforming of bio-derived liquids
 - Define system concepts that can meet efficiency targets
 - Develop reactor concepts through simulations
 - Incorporate membrane technology (O₂, H₂, CO₂)
 - Incorporate developments in catalysis
 - Validate concepts at successive scales
 - micro-reactor, bench-scale, tech transfer
- Analytically and experimentally evaluate
 - Elevated-pressure steam reforming, potentially combined with membrane separations

Evaluation metrics

Near Term – focus on individual process steps

- Generate technical data, e.g., kinetics, flux, etc.
- Quantitative measure: Efficiency (evaluate by modeling)
- Qualitative indicator: Feasibility (evaluate experimentally)
 - e.g., operating conditions, such as T and P combinations
- Mid Term focus on multiple process steps
 - Generate engineering-scale data, e.g., yields, durability, etc.
 - Determine (simulations) process efficiency and cost projections

Longer Term – in consultation with early adopters (industry partners)

Reforming at high pressures increases methane and reduces hydrogen yields

- Options to overcome challenges
 - Higher temperature (high T & P combinations increase materials costs)
 - Higher steam-to-carbon (S/C) ratio
 (excess steam generation may lower process efficiency)
 - Hydrogen removal to increase conversion and yield pure H₂ (may increase coke formation tendency; product hydrogen is at lower pressure)
 - CO_2 removal to improve CH_4 conversion and yield higher purity H_2
- Oxygen provided through an O₂-transport membrane can provide the heat for the endothermic reforming reaction without introducing N₂
 - Potentially replace combustion zone with air zone?

A micro- membrane reactor was built and tested

The measured hydrogen transport follows Sievert's and Arrhenius laws at the higher temperatures

High pressure produced light HCs H₂ permeation increased CH₄ conversion, H₂ yield

The catalyst bed effectively reforms ethane and ethylene

Reactor Inlet: Gas analysis indicated reactions were initiated within the vaporizer and feed preheat zones

Pressure, psig	100 psig					
Temperature, °C	600°C	650°C	700°C			
S/C=6	Exp.	Exp. Exp.				
H ₂ , mol/mol EtOH	0.89	1.40	1.96			
CH ₄ , mol/mol EtOH	0.25	0.39	0.51			
CO+CO ₂ , mol/mol EtOH	0.38	0.66	0.97			
Pressure, psig	1000 psig					
Temperature, °C	600°C	650°C	700°C			
S/C=6	Exp.	Exp.	Exp.			
H ₂ , mol/mol EtOH	1.16	1.46	1.52			
CH ₄ , mol/mol EtOH	0.54	0.42	0.57			
CO+CO ₂ , mol/mol EtOH	0.62	0.61	0.79			

C₂s were detected at the inlet of the catalyst bed

■ Higher boiling point and vaporizer temperatures may be causing the reactions ($C_2H_6O = C_2H_4 + H_2O$; $C_2H_6O = CH_3CHO + H_2$)

Reforming without H₂ separation: Higher temperatures and lower pressure favor hydrogen yields

Pressure, psig	100 psig					
Temperature, °C	600°C		650°C		700°C	
S/C=6	Exp.	Equil.	Exp.	Equil.	Exp.	Equil.
H ₂ , mol/mol EtOH	3.63	3.97	4.38	4.71	4.60	5.14
CH ₄ , mol/mol EtOH	0.52	0.46	0.24	0.24	0.12	.095
CO _x Selectivity, %	69	77	80	88	83	96
Pressure, psig			1000	psig		
Pressure, psig Temperature, °C	600)°C	1000 650	psig)°C	700)°C
Pressure, psig Temperature, °C S/C=6	600 Exp.)°C Equil.	1000 650 Exp.	psig)°C Equil.	700 Exp.)°C Equil.
Pressure, psig Temperature, °C S/C=6 H ₂ , mol/mol EtOH	600 Exp. 1.46)°C Equil. 1.73	1000 650 Exp. 1.98	psig)°C Equil. 2.30	700 Exp. 2.18)°C Equil. 2.91
Pressure, psig Temperature, °C S/C=6 H_2 , mol/mol EtOH CH_4 , mol/mol EtOH	600 Exp. 1.46 0.95	0°C Equil. 1.73 1.05	1000 650 Exp. 1.98 0.82	psig)°C Equil. 2.30 0.90	700 Exp. 2.18 0.59)°C Equil. 2.91 0.72

$$CO_x$$
 Selectivity, % = $\frac{(Mols of CO + CO_2 in product)}{(Mols of CO + CO_2 in product)} \times 100$

(Mols of Ethanol Feed) x 2

Reforming with H_2 separation: Higher pressures increase hydrogen permeation, lower CO_x selectivity

	S/C = 6					
Temperature, °C	600°C		650°C		700°C	
Pressure, psig	100	1000	100	1000	100	1000
H ₂ , mol/mol EtOH	3.64	2.25	4.24	2.89	4.45	3.30
Permeate	0.03	0.87	0.09	1.11	0.14	1.39
Raffinate	3.61	1.37	4.15	1.78	4.31	1.91
CH ₄ , mol/mol EtOH	0.49	0.87	0.22	0.7	0.10	0.47
CO _x Selectivity, %	69	45	78	58	80	58

The hydrogen yield increases with decreasing GHSV and with increasing temperature

H₂ w/ membrane is the combined yield in the permeate and raffinate streams

A mathematical model of the membrane reactor has been set up

- Evaluates effect of hydrogen extraction across a membrane in the steamreforming reactor
- Provides ideal case scenario (upper bound) for reactor performance

Assumes:

- fast chemical reaction kinetics (equilibrium limited reactions)
- $C_2H_5OH + H_2O = 2CO + 4H_2$ (Ethanol SR)
- CH₄ + H₂O = CO + 3H₂ (Methane SR)
- $CO + H_2O = CO_2 + H_2$ (WGS)
- no gas-phase mass-transfer limitations in the reactor
- membrane follows Sievert's and Arrhenius laws

Hydrogen flux across the membrane is lower than desired

- With current flux (J_o), only 1.7 moles of H₂ can be extracted
- A 5-fold increase in flux could extract 5.6 moles of H₂
- This compares favorably to the theoretical maximum achievable of 6 moles of H₂ per mole of ethanol
 - $C_2H_5OH + 3H_2O = 2CO_2 + 6H_2$

The hydrogen extracted can be improved by varying GHSV and temperature

- Lower GHSV improves H₂ yield across membrane
- Higher T improves H₂ yield across membrane
- For energy balance (heat needed to support endothermic reaction), 70-75% of theoretical yield (4.2-4.5 moles) may be sufficient

The model suggests that reducing the space velocity may be sufficient

The model predicts that 4.5* moles of hydrogen (per mole of ethanol) should be achievable at GHSV of ~5000 hr⁻¹
*75% of theoretical H2 yield of 6 moles/mole of ethanol

Future work

- Make a go/no-go decision on the use of Pd-based H₂ transport membranes based on performance and cost
- Determine the influence of O₂ and CO₂ transport membranes on pressurized reforming (experimental with modeling support)
- Conduct systems analyses to evaluate the feasibility of alternative fuel processor designs using pressurized reforming
 - Based on experimental data generated

Summary

- We are pursuing an advanced reactor concept that will reduce the energy required to compress the product hydrogen
 - Steam reforming of bio-derived liquids is a promising approach
 - Membrane reactors provide in-situ separation and purification
- Experimental data on pressurized reforming of ethanol has been generated
 - Higher boiling point leads to decomposition in the vaporizer
- Experimental membrane reactor studies are being guided by a reactor model
 - Preliminary results indicate that acceptable hydrogen yields may be possible even with thick Pd-alloy membrane/support layers
 - Easier to fabricate, but involves higher materials costs
- Appropriate combination of temperature, space velocity, and membrane improvements could make this reactor concept cost effective

