2008 DOE Hydrogen Program

Hydrogen Generation from Biomass-Derived Carbohydrates via Aqueous-Phase Reforming Process

Bob Rozmiarek Virent Energy Systems, Inc June 10th, 2008

Project ID # PD6

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Renewable Hydrogen Production Using Sugars and Sugar Alcohols

- Problem: Need to develop renewable hydrogen production technologies using diverse feedstocks
- Description: The BioForming[™] process uses aqueous phase reforming to cost effectively produce hydrogen from a range of feedstocks, including sugar and sugar alcohols. The key breakthrough is a proprietary catalyst that operates in the aqueous phase and has high hydrogen selectivity at low temperature.
- Impact: Sugars and sugar alcohols are capable of producing hydrogen for \$2 to \$4/gge.
- **IP Position:** Exclusive worldwide licenses have been granted, multiple new patent applications placed, and solid trade secret position established.
- **Status:** A pilot plant for hydrogen production from glycerol is in operation and one using sugar is being developed as part of a DOE funded program.

10 kg/day Hydrogen Pilot Plant

VIRENT

Overview

Timeline

- Start September 2005
- Finish September 2009
- Percent complete ~ 65%

Budget

- Total project funding
 - DOE share 1,942 K
 - Contractor share 679 K
- Funding received to date
 - 1,215 K DOE

Barriers

Barriers Addressed		
A) Reformer Capital Cost	C) O&M	
D) Feedstock Issues	E) Greenhouse Gas Emissions	
Targets	2012	2017
Production Unit Capital Cost	\$1 million	\$600 k
Feedstock Cost Reduction	\$2.10 / gge	\$1.55 / gge
Total H ₂ Cost	\$3.80 / gge	< \$3.00 / gge

Partners

- Interactions/ collaborations
 - ADM
 - University of Wisconsin

Objectives

Overall	Design a generating system that uses low cost sugars or sugar alcohols that can meet the DOE H_2 cost target of \$2 to \$3 / gge for 2017.
	Fabricate and operate an integrated 10 kg of H ₂ /day generating system.
2006	Development of APR catalyst, reaction conditions, and a reactor system suitable for converting glucose to hydrogen.
2007	Virent continued to investigate catalyst, reaction conditions, and reactor suitable for converting low cost sugars to hydrogen
	Calculated the thermal efficiency and economics of the APR system utilizing different feedstocks (low cost sugars, glucose, sugar alcohols)
	Compared results of techno-economic analysis with DOE Hydrogen Programs Goals
	Made a Go decision based on technical progress to date and the techno- economic feasibility from the H2A model results.
	Made an internal Ne decision on moving forward to the design and construction
2008	of a 10 kg H ₂ /day demonstration system
	Continue fundamental catalyst development to increase thermal efficiency of the APR system to meet 10 kg H_2 /day demonstration metrics
	Re-evaluate the thermal efficiency and techno-economics of the APR catalyst system

Milestones

• Go/no-go Metrics for FY07 (10/2007)

Utilized H2A model to revalidate the potential to meet the 2012 and 2017 DOE cost targets.

Validated 2nd generation reactor design.

Demonstrated Catalyst Lifetime >= 1 year under aqueous phase reforming conditions.

Specific Catalyst Performance Metrics:

- WHSV >= 1
- Feed Concentration >= 30%
- Feed Conversion: 100%
- Hydrogen Yield: 45%

Accomplishments

Catalyst Development

- Technology Progress to Date
 - 10 X reduction in hydrogen cost
 - 700 X scale-up reactor demonstrated
 - Demonstrated catalyst lifetime > 1 year under APR conditions

Techno-Economic Analysis

- Development pathways identified to reach 2012 and 2017 goals
- Identified most cost sensitive aspects
 - H₂ Yield
 - Feed stock concentration
 - Reactor productivity

Hydrogen Production using the BioForming Process

- Simple Catalytic Process
 - No Water Gas Shift
 - No Steam System
 - No Gas Compressor
 - No Desulphurizer
- Energy Efficient
- Scalable
- Feedstock Flexible

Technical Approach – Glucose

Catalyst Development: Hydrogenation

 Hydrogenation of glucose

VIRENT

- Conditions
- Integration with APR
- Sorbitol Yield and Selectivity
- Industrial process
- Feedstock H₂
 Carrier

Testing Summary

- 75 different catalyst compositions/preparation methods
- 90 different conditions

Catalyst Performance: APR

- Sorbitol Feed Modification
 - Increase
 - H₂ Yield
 - Conversion to Gas
 - Decrease
 - Conversion to organics

Catalyst Performance: APR

- Increasing WHSV
 - Stable H₂ Yield
 - Decreasing Conversion
 - Potential for decreased capital

Measure of Productivity: Space Time Yield

(moles reactant per second per cc of reaction volume)

Bio-Derived Liquid Metrics

	Current Status	2017 Metrics
WHSV	1 - 2	5 - 10
Feed Concentration	30%	50%
Feed Conversion	100%	100%
Hydrogen Yield	> 50%	> 80%

 2017 Metrics represents one set of catalyst characteristics that enables the Virent APR process to meet the DOE Hydrogen Cost Target

Sugar to Hydrogen PFD

Equipment Costing (PFD Level) **VIRENT**

- Aspen Simulations
 - Current Data
 - Sensitivity Analysis on Process Efficiency
- Initial Sizing Estimates
 - ~3 Line specs
 - Equipment Sizing
 - Utility Utilization
- Costing based on standard graphs/charts with appropriate materials of construction and pressure considerations
- Equipment costing cross-checked utilizing price quotes for current equipment and vendor quotes
- Multiple Third Party Verification

H2A Inputs-Capital Equipment

- Uninstalled APR Reforming Equipment (Capital Investment)
 - Purchased Equipment
 - Skid Fabrication
 - Equipment Delivery and Skid Mounting
 - Instruments and Controls
 - Piping
 - Learning Curve factor (@ 5000 Units)
 - Forecourt Specific Assumptions 2005 (DTI Study)
- Installation Factor = 1.1 (H2A)

Virent APR 2017–H2A

Production Unit H2 Efficiency	70.4%	Aspen Model
Virent Package	\$ 791,000	Installed Cost
Product Handling Package	\$ 833,000	H2A
Indirect Depreciable	\$ 297,000	H2A
Feedstock (LHV 14.1 MJ/Kg)	12.2 kg / kg H2	Aspen Model
Other Raw Materials	~ \$0.011 / kg H2	Aspen Model / H2A
Utilities	\$13,400 / yr	Aspen Model / H2A

2017 Cost Breakdown

Specific Item Cost Calculation

Cost Component	Cost Contribution (\$/kg)	Percentage of H2 Cost
Capital Costs	\$0.727	24.0%
Decommissioning Costs	\$0.000	0.0%
Fixed O&M	\$0.415	13.7%
Feedstock Costs	\$1.834	60.6%
Othor Pow Matorial		
Costs	\$0.011	0.3%
Byproduct Credits	\$0.000	0.0%
Other Variable Costs	\$0.040	1 3%

Cost Breakdown

Future Work Plan

- Continue development of the APR catalyst and reactor system that converts glucose to hydrogen.
 - Primary Focus: H₂ Yield
 - Secondary: Reactor Productivity & Feedstock
 Concentration
- Continue fundamental catalyst development and analysis to increase thermal efficiency of the APR system to meet 10 kg H₂/day demonstration metrics
- Review techno-economic performance of the APR system
- Investigate fundamental catalysis science (UW)
- Interaction with PNNL on data exchange and fundamental surface science study

Summary

- APR
 - A promising and cost competitive technology for the production of renewable $\rm H_2$
 - Technology development still required to reach DOE cost targets
- Techno-Economic Analysis
 - Development pathways identified to reach 2012 and 2017 goals
 - Identified most cost sensitive aspects
 - H₂ Yield
 - Feed stock concentration
 - Reactor productivity
- Catalyst Development
 - Technology Progress to Date
 - 10 X reduction in hydrogen cost
 - 700 X scale-up reactor demonstrated