Oil-Free Compression for Hydrogen Delivery and Transportation – Foil Bearings

Hooshang Heshmat, PhD Mohawk Innovative Technology, Inc. June 10, 2008

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project ID # PDP10

Timeline

- June 27, 2006
- June 27, 2008
- 85 Percent Complete

Budget*

- Total proposed project funding
 - \$750,000 DOE SBIR
 - \$0
- \$350,000 FY07 Funding
- \$350,000 FY08 Funding

Barriers

- Hydrogen Delivery Compressor
 - Reliability
 - System Cost
 - Efficiency of H2 Gas Compression

Partners

- Lead: Mohawk Innovative Technology, Inc. (MiTi[®])
- Mitsubishi Heavy Industries

- Assess feasibility of centrifugal compressors for hydrogen transmission and delivery
 - Demonstrate full-scale oil-free foil bearings in compressor simulator rig hardware
 - Test candidate bearing/shaft materials and coatings

Reference Design Requirements

500,000 kg/day Mass Flow Pressure Rise From 500 up to 1200 Psig 100-200 Mile Transmission Distance

Project Milestones

Month/Year	Milestone or Go/No-Go Decision
Sept-06	Project Milestone: Update preliminary modular centrifugal compressor design to achieve pressure and flow.
Jan-07	Project Milestone: Complete Bearing & Test Rig Designs
Mar-07	Project Milestone: Complete Tribological Testing
Jul-07	Project Milestone: Fabricate Foil Bearings and Rig Mods
Apr-08	Project Milestone: Complete Simulator Testing

Oct-09 **DOE Milestone:** Down select novel compression technology for hydrogen delivery.

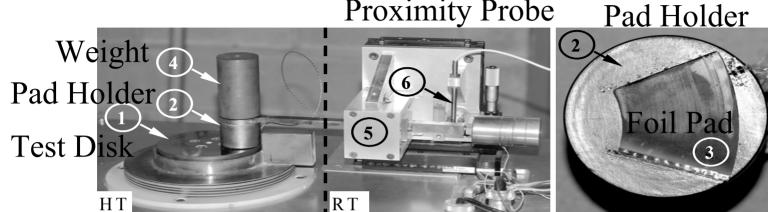
4

Project Plan

- Demonstrate Feasibility of Oil-Free Hydrogen Centrifugal Compressor
 - Refine Compressor System Concept
 - Design Rotor-Bearing Dynamic Simulator
 - Full Size Rotor and Bearings
 - Simulate Dynamics and Bearing Loads
 - Validate Bearing Capability And Shafting Design Through Dynamic Testing In Air
 - Rotor-Bearing Operation Above Bending Critical Speed
 - Operation with Side Loads
 - Identify Impact of Hydrogen
 - Identify Candidate Bearing and Shafting Coatings with Appropriate Friction and Wear Life

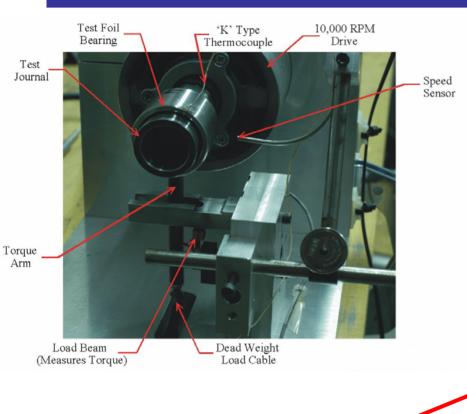
Progress

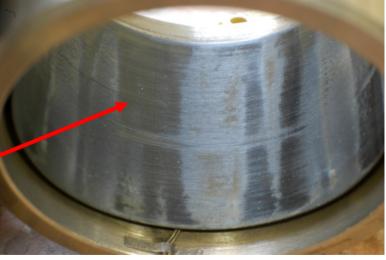
- System Configuration Assessment Complete
- All Design and Fabrication Tasks Complete
- Bearing and Shaft Coating Tests Complete
- Rotor-Bearing Simulator Testing In Progress
 - Operation Above Bending Critical Speed on Gas Foil Bearings Demonstrated
 - Impact of Hydrogen Embrittlement Demonstrated


Final Summary											
Maximum He	ad = 60,00	00 ft	Maximum Disc	harge Tem	p = 300F	Interstage Temperature = 200F					
Compressor	Power	Pressure	Suction Flow	Speed	Specific	Diameter	Tip Speed				
Stage	(hp)	(psig)	(Cu-ft/min)	(rpm)	Diameter	(Inches)	(ft/sec)				
Inlet		500	3616								
1	1626	573	3616		1.50	6.45	1521				
2	1718	645	3400		1.56	6.42	1513				
3	1814	727	3194		1.63	6.41	1511				
Outlet #1	5158	727		54000							
Inlet #2		712									
4	1918	817	2960		1.55	5.92	1550				
5	2028	922	2776		1.62	5.91	1548				
Outlet #2	3946	922		60000							
Inlet #3		912									
6	2262	1054	2570		1.54	5.48	1578				
7	2400	1200	2400		1.62	5.48	1578				
Outlet #3	4662			66000							

Foil Bearing Coating Testing

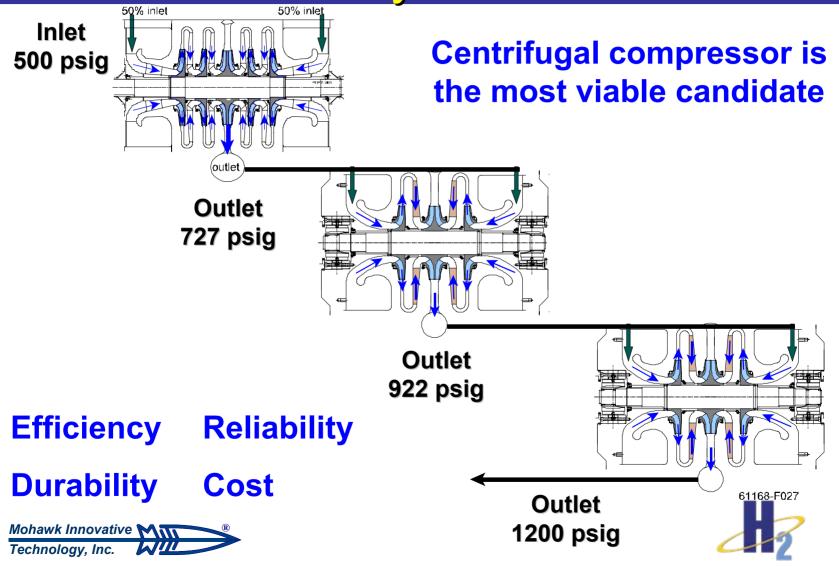
Proximity Probe

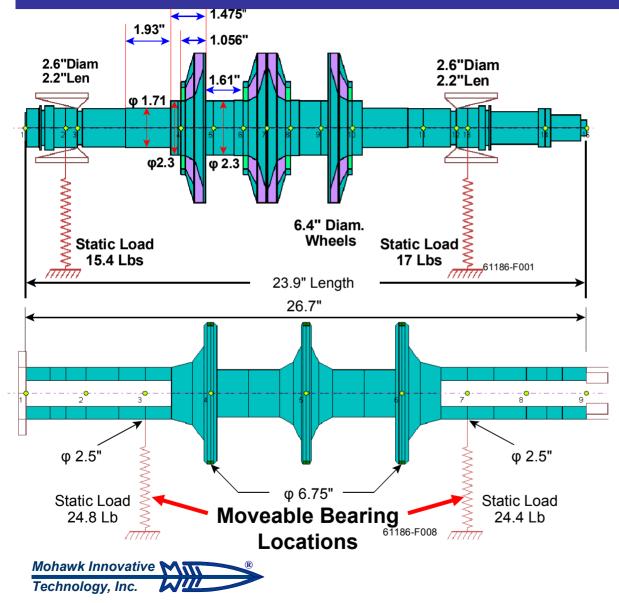

10			Co	oatings	Temperature		COF	Liftoff
12 -	Speed	0.5	Pad	Disc	(Deg-C)	Max	Full Speed	Speed
10 -	Max. COF at Shutdown	- 0.4			RT	0.35	0.003	500
8 -		io	K900	High Dense	300	0.32	0.002	250
Speed (Krpm)	Max. COF at	Friction		Chrome	500	0.25	0.005	900
	Startup	ent of	K900	DLC	RT	0.33	0.002	500
		efficient			300	0.23	0.008	250
	and the second s	ပိ	K900	H-DLC	RT	0.32	0.003	600
2 -	COF at Full Speed	- 0.1	K900		300	Did Not Lift Off		ff
0 -		0				Erratio	Behavior an	d Early
(0 20 40 60 80 100 Time (sec)		H-DLC	K900	RT		Failure	


8

Foil Bearing Coating Testing

Burnishing of Coating


- Start Stop Cyclic Testing
 - 100,000 Cycles
 - Korolon[®] 800 versus High Dense Chrome

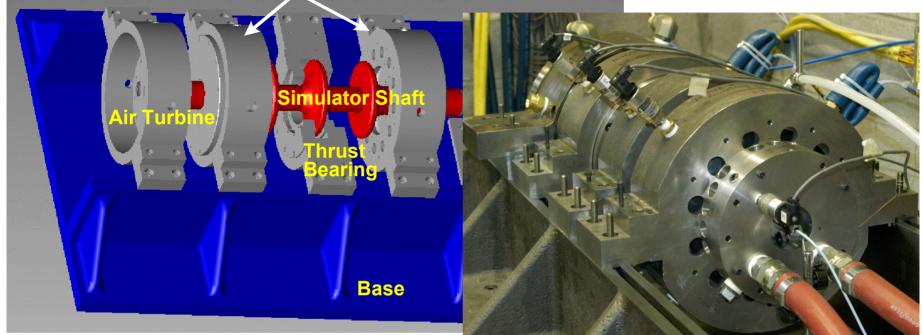


Modular Double Entry Compressor System

Rotor-Bearing Simulator FE Model

60,000 rpm Compressor Concept Design

60,000 rpm Simulator Rotor-Bearing Design



DOE Hydrogen Program

11

Simulator Test Rig

Foil Journal Bearings

61186-F010

Operation Above Bending Mode

0.0050 Predicted **Measured Response** Response at 38,500 rpm 0.0040 61186 HYB COMP CHA=X9V CHB=X5V T4R37 Displacement 0.0030 S. PEK 1744/8 DUAL 1k 1kHz A: AC/0.5V B: AC/0. 5V . 250 E+1 0.0020 37,600 rpm MAG 0.0010 MI 0.0000 12000 24000 36000 48000 60000 ٥ Rotational Speed (rpm) ٥ PWR SP B LIN 1kHz 39. 2kCPM .212E+0 ML X: Y: . 250 Predicted 38,500 E+1 rpm Bend Mode MAG ML Bearing ٥ LIN D PWR SP A 1kHz Х: 39. 2kCPM .142E+D Y: ML Bearing Mohawk Innovative 13 Technology, Inc.

Simulated H2 Embrittlement

DOE Hydrogen Program

14

Identified Technology Needs

- High Speeds in Hydrogen Dictate
 - Advanced Centrifugal Compressor
 - High-Speed, Oil-Free Foil Bearings
 - Low Friction and Long Wear Life Hydrogen
 Compatible Coatings
 - Hydrogen Compatible High Strength Shaft
 Materials

Future Work for FY08

- Complete Dynamic Testing Under Different Bearing Loading Conditions
 - Rotating Imbalance Loads
 - Steady Side Loads
- Refine System Concept & Component Designs
 - Number of Compression Stages
 - Operating Speeds
 - Foil Bearing Designs Based Experimental Data
 - Steady and Dynamic Loads
 - Required Damping
 - Identify Technology Readiness and Development Needs

Project Summary

- Hydrogen Centrifugal Compressor Operating at Very Highspeeds Require Oil-free Compliant Foil Bearings
- Multi-stage, High-speed Centrifugal Compressors Operating in Series Are Necessary and Feasible As Demonstrated By:
 - Low Friction and Long Wear Life of Korolon
 - Operation Above Bending Critical Speeds on Foil Bearing
- Additional Technology Needs
 - High Efficiency Dynamic Seals
 - Testing at High Pressures and Flow Rates Through Foil Bearings
 - Structural, Bearing and Coating Material Compatibility With Hydrogen

Hooshang Heshmat, PhD 518 862-4290 x-12 hheshmat@miti.cc

