

Enabling Hydrogen Embrittlement Modeling of Structural Steels

Brian Somerday Sandia National Laboratories June 11, 2008

Project ID # PDP11

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000

Overview

Timeline

- Project start date Jan. 2007
- Project end date Sept. 2015
- Percent complete 15%

Budget

- Total project funding (through FY08)
 - DOE share: \$384K
- FY07 Funding: \$184K
- FY08 Funding: \$200K

Barriers & Targets

- Barriers addressed
 - High Capital Cost and Hydrogen Embrittlement of Pipelines
 - Storage Tank Materials and Costs

Partners

- DOE Pipeline Working Group
 - Sandia National Lab
 - Oak Ridge National Lab
 - Savannah River National Lab
 - CTC
 - NIST
 - Industrial gas companies
 - ASME

Objectives

- Enable application of structural integrity models to steel hydrogen pipelines
 - Models can demonstrate that hydrogen embrittlement can be accommodated and pipeline safety margins can be quantified
- Enable development of micromechanics models of hydrogen embrittlement in pipeline steels
 - Micromechanics models are essential for understanding the fundamentals of hydrogen transport and embrittlement in steels

- Measure cracking kinetics and thresholds of X100 steel under static loading in hydrogen gas pressures from 7 to 140 MPa (FY08 Q1; complete)
- Measure fatigue crack propagation rates of X100 steel in hydrogen gas over the pressure range 7 to 140 MPa (FY08 Q3; in progress)

Approach

- Measure properties of pipeline steels in high-pressure H₂ gas using fracture mechanics methods
 - Thresholds for sustained-load cracking
 - Fatigue crack growth rates under cyclic loading
- Assess suitability of steels by using measured properties as inputs into structural integrity models
 - Materials are qualified for service if pipeline meets performance critieria, e.g., number of allowable pressure cycles
- Identify and measure fundamental parameters in mechanistic models of hydrogen embrittlement

Materials testing motivated by design method

- Article KD-10 in ASME BPV Code Section VIII, Div. 3
 - Applies to H_2 pressure vessels and pipelines
 - Design method identifies two H₂-assisted failure modes: fatigue crack growth and sustained-load cracking
- Requires materials data in high-pressure hydrogen gas for fracture mechanics-based structural integrity models

Testing of X100 line pipe steel

- Yield strength
 - 96 ksi (662 MPa) in longitudinal (L) orientation
 - 114 ksi (787 MPa) in circumferential (C) orientation

Measurement of sustained-load cracking thresholds

wedge opening load (WOL) cracking threshold specimen

strain gage leads (Excitation and DAQ)

- Specimen loaded to K_o>K_{TH} using bolt while contained in glove box (Ar with ~1 ppm O₂)
 - Loaded specimen exposed to H₂, crack extends after incubation time
 - Crack arrests at K=K_{TH}

Results show hydrogen embrittlement in X100 steel

X100 (air)

Measured properties assessed from structural integrity model

- Calculate critical crack depth, a_c, for X100 hydrogen pipeline operating at p = 21 MPa pressure
 - assume axial flaw with infinite length
 - hoop stress σ_h = 260 MPa (37% SMYS)
 - measured K_{TH} = 85 MPa-m^{1/2} in 21 MPa H₂ gas
 - $-a_{c} = 0.6 \text{ cm} (a_{c}/t = 0.45)$

Model shows that pipeline can safely tolerate deep flaw

Incubation time for crack extension depends on K_o and H₂ pressure

Procedures for measuring sustained-load cracking thresholds should not prescribe arbitrary test durations

Crack branching may account for absence of crack extension at low K_o

Issues that compromise measurement of conservative properties must be identified

X100 (100 MPa H₂)

National

Microscopy evidence provides Insight into hydrogen embrittlement

X100 in 100 MPa H₂ gas: crack profile

X100 in 21 MPa H₂ gas: fracture surface

- Initial evidence suggests transgranular microcracks form in ferrite with limited plasticity
 - Results provide information for development of micromechanics models

System for measuring fatigue crack growth rates in H₂ gas

vessel on mechanical test frame

- Pressure vessel designed to contain H₂ gas up to 20 kpsi (138 MPa)
- Challenges in testing and system design
 - leak rates at dynamic seals
 - accurate load measurement
 - effect of high-pressure H₂ gas on instrumentation
- Fatigue crack growth data serve as inputs to structural integrity models

Future Work

Remainder of FY08

- Determine solution for leaks at sliding seals in system for measuring fatigue crack growth rates in hydrogen gas
- Measure fatigue crack growth rates of X100 in hydrogen gas

FY09

- Emphasize testing of low-strength steels such as X42 and X52
 - Includes base metal and welds
 - Measure fracture toughness, sustained-load cracking thresholds, and fatigue crack growth rates in hydrogen gas

Summary

- Completed measurements of cracking thresholds for X100 steel as a function of H₂ gas pressure
 - Structural integrity model shows that pipeline fabricated from X100 could tolerate deep flaws
 - Testing results demonstrate that procedures must be defined to ensure conservative properties are measured
- Microscopy evidence suggests that hydrogen embrittlement proceeds by transgranular fracture across the ferrite phase
 - Such evidence provides important information for the development of micromechanics models of hydrogen embrittlement

