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Overview

• Project start date Jan. 2007
• Project end date Sept. 2015
• Percent complete 15%

• Barriers addressed
– High Capital Cost and 

Hydrogen Embrittlement of 
Pipelines

– Storage Tank Materials and 
Costs

• Total project funding (through 
FY08)
– DOE share: $384K

• FY07 Funding: $184K
• FY08 Funding: $200K

Budget

• DOE Pipeline Working Group
– Sandia National Lab
– Oak Ridge National Lab
– Savannah River National Lab
– CTC
– NIST
– Industrial gas companies
– ASME

Partners

Timeline Barriers & Targets



Objectives

• Enable application of structural integrity models to steel 
hydrogen pipelines
– Models can demonstrate that hydrogen embrittlement can be 

accommodated and pipeline safety margins can be quantified

• Enable development of micromechanics models of 
hydrogen embrittlement in pipeline steels
– Micromechanics models are essential for understanding the 

fundamentals of hydrogen transport and embrittlement in steels



• Measure cracking kinetics and thresholds of X100 steel 
under static loading in hydrogen gas pressures from 7 to 
140 MPa (FY08 Q1; complete)

• Measure fatigue crack propagation rates of X100 steel in 
hydrogen gas over the pressure range 7 to 140 MPa (FY08 
Q3; in progress)

Milestones



Approach

• Measure properties of pipeline steels in high-pressure 
H2 gas using fracture mechanics methods
– Thresholds for sustained-load cracking
– Fatigue crack growth rates under cyclic loading

• Assess suitability of steels by using measured 
properties as inputs into structural integrity models
– Materials are qualified for service if pipeline meets performance 

critieria, e.g., number of allowable pressure cycles

• Identify and measure fundamental parameters in 
mechanistic models of hydrogen embrittlement



Materials testing motivated 
by design method

• Article KD-10 in ASME BPV Code Section VIII, Div. 3
– Applies to H2 pressure vessels and pipelines
– Design method identifies two H2-assisted failure modes: 

fatigue crack growth and sustained-load cracking
• Requires materials data in high-pressure hydrogen gas for 

fracture mechanics-based structural integrity models
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Testing of X100 line pipe steel

• Yield strength
– 96 ksi (662 MPa) in longitudinal (L) orientation
– 114 ksi (787 MPa) in circumferential (C) orientation
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Measurement of sustained-load 
cracking thresholds

• Specimen loaded to Ko>KTH using 
bolt while contained in glove box 
(Ar with ~1 ppm O2)

• Loaded specimen exposed to H2, 
crack extends after incubation time

• Crack arrests at K=KTH
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Results show hydrogen 
embrittlement in X100 steel
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Measured properties assessed 
from structural integrity model

• Calculate critical crack depth, ac, for X100 hydrogen 
pipeline operating at p = 21 MPa pressure
– assume axial flaw with infinite length
– hoop stress σh = 260 MPa (37% SMYS)
– measured KTH = 85 MPa-m1/2 in 21 MPa H2 gas
– ac = 0.6 cm (ac/t = 0.45)
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Incubation time for crack extension 
depends on Ko and H2 pressure

Procedures for measuring sustained-load cracking 
thresholds should not prescribe arbitrary test durations
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Crack branching may account for 
absence of crack extension at low Ko
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Microscopy evidence provides 
insight into hydrogen embrittlement
X100 in 100 MPa H2 gas:

crack profile

X100 in 21 MPa H2 gas:
fracture surface

• Initial evidence suggests transgranular microcracks
form in ferrite with limited plasticity
– Results provide information for development of 

micromechanics models



System for measuring fatigue 
crack growth rates in H2 gas

• Pressure vessel designed to contain 
H2 gas up to 20 kpsi (138 MPa)

• Challenges in testing and system 
design
– leak rates at dynamic seals
– accurate load measurement
– effect of high-pressure H2 gas on 

instrumentation
• Fatigue crack growth data serve as 

inputs to structural integrity models

vessel on mechanical test frame



Future Work

Remainder of FY08
• Determine solution for leaks at sliding seals in system for 

measuring fatigue crack growth rates in hydrogen gas
• Measure fatigue crack growth rates of X100 in hydrogen gas

FY09
• Emphasize testing of low-strength steels such as X42 and X52

− Includes base metal and welds
− Measure fracture toughness, sustained-load cracking thresholds, 

and fatigue crack growth rates in hydrogen gas



Summary

• Completed measurements of cracking thresholds for X100 
steel as a function of H2 gas pressure
– Structural integrity model shows that pipeline fabricated from X100 

could tolerate deep flaws
– Testing results demonstrate that procedures must be defined to 

ensure conservative properties are measured

• Microscopy evidence suggests that hydrogen embrittlement
proceeds by transgranular fracture across the ferrite phase
– Such evidence provides important information for the development

of micromechanics models of hydrogen embrittlement
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