

DEVELOPING IMPROVED MATERIALS TO SUPPORT THE HYDROGEN ECONOMY

Michael Martin Edison Materials Technology Center June, 2008

Project ID# PDP 12

This presentation does not contain any proprietary or confidential information

Objectives

Edison Materials Technology Center (**EMTEC**) uses goals set forth in the USDOE *Hydrogen, Fuel Cells & Infrastructure Technologies Program Plan* to find and fund projects which satisfy these criteria:

- Demonstrate feasibility with job creation potential
- Cross-cutting breakthrough materials technology
- Stimulate near term manufacturing-based commercialization
- Patterned on EMTEC Core/Commercial Technology (CT) model

Target Technologies and Barriers

E-MÍT-É-C-

Target Technology	DOE Barrier Addressed
H ₂ Generation from Renewable Liquid Feedstocks	Fuel Processor Capital Costs
H ₂ Generation by Water Electrolysis	Renewable Integration
H ₂ Generation by Photo-electrochemical Electrolysis	Materials Efficiency, Bulk Materials Synthesis, Device Configuration Designs
H ₂ Separation Materials	Cost, Impurities
H ₂ Generation from Biomass and Coal	Capital Cost and Efficiency
H ₂ Storage by New Materials and Concepts	Efficiency, Cost, Weight and Volume
H ₂ Processing: Sensors, Delivery, Purification	Durability, Cost

EMTEC

- EMTEC is one of 8 State of Ohio Edison Centers
 - Established in 1987 by Ohio Gov. Celeste
 - 501c(3) Not-for-Profit
- Membership Based with Over 140 Industry, University, and Government Members
- Virtual We Own no Major Capital Equipment
- Access to Over \$2B in State-Of-The-Art Facilities
- Significant Experience in Ceramics, Metals, Polymers, and many Material Processes

Approach

- EMTEC solicited projects that:
 - Have Industry Relevance
 - Are Appropriately Resourced
 - Are Aligned with EERE Hydrogen Goals
 - Address DOE Barriers
 - Have Near Term Commercialization Viability
- EMTEC has extensive experience managing collaborative technology projects
- EMTEC has developed a business model for selection and management of core/commercial technology

Status and Budget

Status

- 3 RFP Rounds
- 125 White Papers and Proposals Reviewed
- 46 Site Visits Performed
- 37 Total Projects Funded
- 7 Phase III FY08 Projects Pending

Budget

- FY04: \$2.945 M
- FY05: \$2.961 M
- FY06: \$2.475 M
- FY08: \$.984 M
- Contractor cost share > \$8.3 million
- State of Ohio cost share: > \$2.8 million

EMTEC Interactions/Collaborations

- Air Force Research Laboratory
 - Technology transfer program
 - Commercialization & business development
 - SBIR & Commercialization pilot program support
- State of Ohio
 - Department of Development Technology Division
 - Third Frontier Program
 - Multiple fuel cell projects
 - Photovoltaic Innovation Center (PVIC)
 - Ohio Fuel Cell Coalition / Wright Fuel Cell Group
- Business Outreach Services
 - Procurement Technical Assistance Center (PTAC)
 - Manufacturing Small Business Development Center (MSBDC)
- EMTEC Technical Steering Committee (TSC)

-E-M-T-E-C-

Novel Stackable Structural Reactor (SSR[™]) for Low-cost Hydrogen Production - Catacel Corp.

- DOE Barriers Addressed: Fuel Processor Manufacturing, Operation and Maintenance
- Total project value: \$518,737*
- Drop-in replacement for the loose ceramic catalyst media in the stationary steam reforming process
- Allows 50% additional capacity from given plant size, or 10% energy savings
- Accomplishment: Lab evaluation complete, pilot manufacturing installed
- Future Work: Pilot plant planned startup: 8/1/08

Low Cost MEMS Hydrogen Sensor for Transportation Safety Makel Engineering, Inc.

- **DOE Barriers Addressed:** Control and safety
- Total Project Value: \$562,656*
- Goals and Objectives:
 - Advanced hydrogen sensor system for hydrogen powered transportation applications
 - Provides the means for low cost, compact, low power, and miniaturized systems suitable for mass production

• Accomplishments:

- Prototype H₂ sensor developed and automotive testing initiated
- Future Work:
 - Nanomaterial enhancements, product testing with automotive partners, improved manufacturability at reduced cost, and market development

Prototype Detector Electronics

2006 R&D 100 Award "Ultrafast Nanostructured Hydrogen Sensor"

High Strength, Low-Cost Microballoons for Hydrogen Storage - Powdermet Inc.

- **DOE Barriers Addressed:** Weight and volume, efficiency, portability
- Total Project Value: \$553,142*
- Goals and Objectives:
 - High-strength microballoons by chemical vapor deposition for high volume hydrogen storage
 - Store 6 wt. % H2 in balloons, >4 wt. % in system
 - Collaborators include AF Research Labs, Precision Energy and Technology, and Protonex
- Accomplishments: Verified microballoon H₂ storage
- **Future Work:** Design, build and test H₂ storage and delivery systems

Preparation of Nanoscale Tubular Membrane for Hydrogen Purification/Separation

MetaMateria Partners, Columbus, OH

- DOE Barriers Addressed:
 - Efficient H₂ separation from reformed gas; CO₂ sequestration
- Total Project Value: \$210,000
- Goals and Objectives:
 - Move high-flux hydrogen membrane technology from academia to industry

• Accomplishments:

- Ultra-thin, nanostructured Pd membrane on high quality, multi-layer ceramic support
- Tubular configuration demonstrated
- H₂ flux comparable to best reported values
- Permeance at 320°C was 3.7x10⁻⁴ vs 6x10⁻⁴ mol/(m²·s·Pa^{1/2}) for best Pd membrane reported in literature
- Future Work:
 - Improve Pd alloy membrane & multi-layer, ceramic membranes
 - Identify partners and funding support for further development of this H₂ separation technology to demonstrate in a system

Pd membrane on Al₂O₃ porous tube

Membrane FIB cross section

Novel Ceramic Hydrogen Sensors for Fuel Cell Applications – NexTech Materials

- **DOE Barriers Addressed:** Control and safety.
- Total Project Value: \$620,602*
- Goals and Objectives:
 - Design low-cost hydrogen safety sensor that is highly sensitive and selective to hydrogen.
 - Take technology from bench-top to prototype level, ready for product launch to market.

• Accomplishments:

- Demonstrated high selectivity to hydrogen without interference from CO, CH₄, H₂O, or silicone vapors; αprototypes have been tested with excellent performance for 2000+ hours.
- Future Work: Launch of fully packaged beta-prototypes integrated on PCB followed by field testing.

Improved Hydrogen Liquefaction Process - Praxair

• DOE Barriers Addressed:

- Cost of hydrogen liquefaction
- Efficiency of hydrogen liquefaction
- Total Project Value: \$200,804
- Goals and Objectives:
 - Improve hydrogen liquefaction efficiency
 - Improve ortho-para conversion process
- Accomplishments:
 - Developed improvement to ortho-para conversion process
- Future Work:
 - 3-Year DOE program for developing process further – see PDP31

Manufacturing UltraCell's Reformed Methanol Micro Fuel Cells in the State of Ohio For Military and Commercial Markets

- **DOE Barriers Addressed:** Efficiency, Cost, Weight and Volume
- Total Project Value: \$425,000
- Goals and Objectives:
 - Develop and Demonstrate technology with potential customers to accelerate next level of funding support and purchase order generation.

• Accomplishment:

- Testing at "alpha" sites such as the Federal Bureau of Investigation (FBI), U.S. Forestry Service, U.S. Marine Corp, and the Air Force Research Laboratory (AFRL).
- Soldier Technology U.S. 2008 Conference: "Best Soldier System Innovation & Technology" Award.
- JRTC Technology Readiness Level (TRL) 7 status

• Future Work:

- Secure tooling for continued long-term material evaluation.
- Field additional prototypes for feedback from Alpha sites.
- Continue performance and form factor work for manufacturing plant outlines.

- EMTEC manages a program with a DOE cooperative agreement in Hydrogen, Fuel Cells & Infrastructure Technologies
- Program features 37 individual, topically-related projects
- Each project targets at least one DOE technical barrier
- Successful projects generate jobs and marketable products or processes

Future Plans

- Identify and fund seven capstone projects for phase III commercialization.
 - Ultrafast Nano Sensors
 - Reel-to-Reel Membrane Processing
 - High Efficiency Catalytic Reformation
 - High Ultilization Catalyst Dispersion
 - Integrated Multi-Fuel SOFC
 - Highly Selective Hydrogen and Sulfur Sensor
 - Ultrahigh-Strength Microballoons