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Overview
Timeline
Start:  30 September 2006
End:   30 December 2008
70% complete

Budget
Total Funding:  $1,239,479
DOE Share: $   973,783
Contractor: $   265,696

funded by both the DOE Nuclear 
Hydrogen Initiative and DOE HFCIT 
programs 

Received in 2007: $524,841
2008 Funding (to date) : $283,710

Barriers Addressed
G. Capital Cost of Electrolysis Systems
I.   Grid Electricity Emissions

Partners
GE Global Research
GE Energy Nuclear
Entergy Nuclear
National Renewable Energy Laboratory
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Objectives
Study the feasibility of using alkaline electrolysis 
technology with current-generation nuclear power for 
large scale hydrogen production:

Economic Feasibility : Market study of existing industrial H2 users
Technical Feasibility : Developing pressurized low cost electrolyzer
Codes and Safety: Environmental and regulatory impact assessment

Units DOE 2012 Target
Cell Efficiency % 69%   (1.8V)
System Cost $/kg H2 $0.70 ($400/kW)
Electricity Cost $/kg H2 $2.00
O&M Cost $/kg H2 $0.60
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Approach
Task 1:  Define market and requirements

• Industrial users survey
• Technical and pricing requirements  
• Nuclear regulatory and environmental impact issues

Task 2:  Design and build pressurized electrolyzer stack
• Develop plastic stack technology  
• Low cost electrode methods

Task 3:  Plastics oxidation lifing
• Creep resistance
• Oxidation 

Task 4:  Demonstrate electrolyzer performance and capital costs
Task 5:  System operation testing

• O&M cost assessment
Task 6:  Create industrial-scale system conceptual design
Task 7:  Create 1-kg-per-second demonstration system 

conceptual design

100% 
complete

80% 
complete

50% 
complete

10% 

50% 

50% 
complete 

10% 
complete 
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Industrial Hydrogen Markets

Global consumption: 42 million tons H2 per year
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An Existing, Growing Market
• 4 million tons H2 / year for mid-range industrial 

• Per-site consumption on order of 100-1000 kg per day

• 15% yearly growth

• Currently served by delivered gas or liquid

• Required pressure varies – but much lower than 
automotive storage scenario

• Costs vary significantly : $4-$15 per kg

Distributed Electrolysis Can Fill Growth 
Demand, If Cost-Competitive 
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existing fleet - US 1995-2005
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Electricity Production Costs

Lowest cost electricity available from existing nuclear
Electricity market demands set actual price
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Electrolysis Cost of Hydrogen

Capital Cost, $/kW
$4,000 $800 $400

1.0 $4.79 $1.51 $1.10
2.0 $5.29 $2.01 $1.60
3.0 $5.79 $2.51 $2.10
4.0 $6.30 $3.01 $2.60
5.0 $6.80 $3.52 $3.11
6.0 $7.30 $4.02 $3.61
7.0 $7.80 $4.52 $4.11
8.0 $8.30 $5.02 $4.61

Cost of 
Electricity, 

¢/kWh 

Basis is the NREL
H2A model, modified 
from the 1500 kgpd
case.

• Industrial point-of-
use case:  
No dispensing or 
distribution costs.
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Stack Module Costs
Electrolyzer Stack Module Cost
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5 kgph 250 kW $45,800

20 kgph 1 MW $150,000

* Assumes 50 kWh/kg H2

Cost scenarios 
based on actual cost 
of demonstration 
stack, projected 
assembly and labor 
costs. 

Balance of system 
costs are additional, 
and depend on 
system size.
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GE Plastic Stack Technology

Completed stack assembly

• Injection-molded sections
• Complex features all 

molded in the plastic – not 
machined in the metal

• Sheet metal/mesh 
electrode

• Single plastic mold for 
demonstration: 3D / 
multiple molds in full 
production
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Electrode 
Assembly

Plastic 
weld

Diaphragm 
cartridge

Diaphragm 
cartridge

x9

Stack end assembly 
(machined from 
molded blanks

Stack end assembly 
(machined from 
molded blanks

9 cell stack core

Plastic Stack Construction

10-cell Stack 
module

(shell, bolts, 
current straps not 
shown)

15 bar pressure stack completed and ready for testing
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Plastic Joining Method and Testing
• Research on 

various plastic 
grades

• Accelerated testing 
for high pressure 
oxidant exposure

• Plastics retain high 
yield strength

• Joint typically as 
strong as plastic 
base material

Wedge Breaking Test

Joint Finite Element

Post Testing
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GE Electrode Technology
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• Achieved target performance 
with hot spray technique in 2005.

• Demonstrating  electrodeposition 
for additional cost and 
performance advantage:

- Thinner bipolar plate
- Eliminates warping
- Coats 3D electrode surface

GE electrode technology applies 
a high effective surface area, 
nickel-based coating to the base 
metal bipolar plate for high 
performance at low cost.
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Cell Performance

Alkaline Electrolyzer Cell Tests
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Tensile and bending specimens in O2 tested to 40-
62 equivalent weeks at a design pressure of 15 bar 
and at 80C 

Accelerated material testing

• Polysulfone materials, 
Udel® and Radel®, retain 
ductility and yield strength

• Noryl® EN265 and  
modified Noryl® EN265 
maintain  yield strength, but 
limited or no ductility

Udel® and Radel® most 
likely candidates for long 
term electrolyzer operation
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Additional Work: “1 kgph” System

Study operability & maintenance characteristics

Capabilities:
• 1 kg H2 / hr production rate
• Currently being upgraded to 

15 bar pressure capability
• Automated controls
• P, T, massflow, purity 

measurements
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Cooper Nuclear Station – Nebraska
• Unipolar design generates 7.5 SCFM or 
3,942,000 SCF per year.
• 90% - 97% availability
• No special regulatory or licensing issues because 
hydrogen is generated on demand – no storage.  
• Onsite production roughly ½ the cost of delivered 
hydrogen.  

Industrial scale system design
In collaboration with Entergy, the background, performance, and operational 
history of electrolyzers at Cooper Nuclear Station and Pilgrim Stations used to 
benchmark system costs and regulatory issues.  

Pilgrim Nuclear Station – MA
• The electrolytic hydrogen water chemistry 
(EHWC) system capable of producing 50 
SCFM H2 and 25 SCFM O2.

• Availability less than 50%…. Attributed to 
poor facility design and ability to easily 
maintain.

• System no longer in operation.
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Hypothetical Electrolyzer 
Facility 
w/ tie in to Air Products 
Hydrogen Pipeline 

Reactor Building 

Existing H2 Pipeline 

1 kgps Commercial Scale System
Waterford 3 Generating Station, located in Hahnville, LA is an example 
of a possible 1 kgps electrolysis plant site

• Energy usage:  50 kWh per kg of hydrogen to produce 1 
kgps = 180 MW of electric power.  

• Water consumed:  9.2 liters of water/kg of hydrogen 
produced  = 7000 gallons/hr. 

• Assume (4) - 200 cell modules powered from the same 
rectifier in electrical series.
• Each module draws 1500 amps, cell voltage is 1.6 V = 
480 kW/module or 1920 kW per power block.

• Each rectifier produces 1500 A at 1280 VDC.

• 90 power blocks required to produce 1 kgps of 
hydrogen. 
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2008: System testing at ambient and 15 bar 
pressure
O&M cost assessment
Material lifing studies
Conceptual design of reference plants
Complete regulatory assessment

Future Work
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