

Innovation for Our Energy Future

Distributed Bio-Oil Reforming

2008 DOE Hydrogen, Fuel Cells & Infrastructure Technologies Program Review

> R. J. Evans¹, S. Czernik¹, R. French¹, M. M. Penev, M. Ratcliff¹, J. Marda², A. M. Dean²

¹National Renewable Energy Laboratory ²Colorado School of Mines

June 11, 2008

Project ID# PDP16

This presentation does not contain any proprietary, confidential or otherwise restricted information

Overview

Timeline

- Project start: 2005
- Project end: 2012
- 40% completed

Budget

- FY 2005: \$100K
- FY 2006: \$300K
- FY 2007: \$350K
- FY 2008: \$700K

Partners

- Colorado School of Mines (FY 2006) Oxidative cracking
- University of Minnesota (FY2007) Catalyst Development
- Chevron (FY 2006) Feedstock Effects (3 year CRADA)

Production Barriers

- A. Fuel processor capital
- C. Operation & maintenance
- D. Feedstock issues
- F. Control & safety

2012 Targets

- \$3.80/gallon gasoline equivalent
- 72% energy efficiency (bio-oil to H2)

H₂ Distributed Production via Biomass Pyrolysis

Biomass pyrolysis produces a liquid product, bio-oil, which contains a wide spectrum of components that can be efficiently produced, stored, and shipped to a site for renewable hydrogen production.

NREL is investigating the low-temperature, partial oxidation, and catalytic autothermal reforming of bio-oil for this application.

Pyrolysis:

Catalytic Steam Reforming of Bio-oil:Bio-oil (74 wt% CH1.28O0.41, 26 wt % H2O)- 90 wt% of feedCH3OH- 10 wt% of feedH2O (2.5 mole ratio steam to carbon)

Overall Reaction: $CH_{2.18}O_{0.78} + 0.51O_2 + 1.66 H_2O -> CO_2 + 1.47 H_2O + 1.28 H_2$

Estimated Practical Yield: 9.3 wt % Energy Efficiency Estimates are in Progress based on Aspen Modeling

Distributed Bio-Oil Reforming Approach

Objectives

Overall

- Develop the necessary understanding of the process chemistry, compositional effects, catalyst chemistry, deactivation, and regeneration strategy as a basis for process definition for automated distributed reforming; demonstrate the process
- FY 2008
 - Improve bio-oil atomization with less MeOH addition,
 - Study of partial oxidation at 650C
 - Demonstrated catalytic conversion consistent with \$3.80/kg hydrogen
 - Design, build and operate a bench scale unit capable of long duration runs (8hrs/cycle) with better material balances

Technical Accomplishments

- FY 2006
 - Bio-oil volatilization method developed
 - Oxidative cracking to CO with minimal CO₂
- FY 2007
 - Demonstrated equilibrium catalytic conversion to syngas at low temperature and low H_2O/C
- FY2008
 - Lower methanol content
 - Demonstrate catalyst performance (in progress)
 - Design, build, & operate bench scale system (in progress)

Bio-oil Injection Working Hypothesis

- Ultrasonic nozzle provides:
 - Rapid, uniform fuel-air mixing and temperature distribution
 - Reduces wall impingement
- Leading to:
 - Low carbon formation-
 - extreme analogy to diesel PM reduction via high injection pressure
 - High gas yields and selectivity control

Are Ultrasonics the Key?

- Understand reaction sensitivity to droplet size and spray angle.
- How do ultrasonic power requirements and costs respond to higher viscosity and scale-up?
- Can we leverage high pressure injection system technology for diesel fuels?
 - E.g., Technology being developed for residual fuels injection technology for clean locomotive and marine engines
- Other researchers reported positive results feeding biooil to diesel engines

Ultrasonic Nebulizer Oxidative Cracking 0.5 s @ 650 C

1. Bio-Oil Volatilization

- The new nozzle is capable of higher power inputs and can handle higher viscosity feeds but produces a larger particle size
 - Key experiments to be performed on MeOH level and mass transfer with the new system
- Not successfully run to date due to reactor modifications and component failure
 - Due back in service next week
- Other key activities are dependent on new experimental series with the nozzle
 - The new nozzle is capable of higher power inputs and can handle higher viscosity feeds but produces a larger particle size

2. Oxidative Cracking Experiments Using 30 % Methanol

Overall H₂ Yield (650 °C)

CO Yield From Bio-Oil (650 °C)

Effect of effective O:C ratio for two methanol addition levels (50% and 30%) and two gas phase residence times (200 and 300 ms) on H2 and CO yields.

REL National Renewable Energy Laboratory

Integrated System under "std" Conditions Vapor RT=0.3 s; WHSV[0.5%Rh/Al₂O₃]=3.5; S/C=2.5; O/C_{off}=1.3

3. Catalysis Impact of oxidative Cracking Step

Catalyst from University of Minnesota 80 (Lanny Schmidt's group) and is 1 wt % Rh 70 and 1 wt % ceria on alumina (O:C = 1.7) 60 Gas Phase Long **Yield (wt. %)** 110 50 Gas Phase Short 40 Equilibrium 100 Catalytic Long 30 90 Catalytic Short 20 80 10 **3**70 0 CO CO2 H2 H₂O <u>+</u> 60 8 -<u>-</u> 50 7 ≥ 40 6 Yield (wt. %) 30 20 10 0 2 **Carbon Accounting** 1 -Carbon Accounting includes CO, CO₂, CH₄, 0 . CH₃OH, Benzene, and Residual Carbon CH4 **Residual Carbon** Benzene NREL National Renewable Energy Laboratory

Bench Scale Reactor Design

- Take advantage of existing equipment
- Build out of quartz
- Long duration runs
- Detailed product analysis
- Improved material balance
- Design and lab arrangements are in progress

Bench Scale Reactor System

Process Subsystems Outline

Reforming Conditioning

<u>NOTE</u>

- Carbon deposition from CPOX may need cyclic burn-out (parallel reactors)
- Optimization and agreement of kinetics still under consideration (ATR-in T°C)

Initial ASPEN Models Generated

ASPEN Mass & Energy Balance Models

Study overall efficiency potential

- auxiliaries considerations
- heat loss considerations
- supplemental fuel combusted for steam generation
- initial operating conditions

Trade-off system designs

- enriched oxygen feed
- hydrogen purification (PSA vs. electrochemical separation)

Summary

- High conversion of bio-oil in non-catalytic step leads to significant yield of CO at 650 C
- Lower methanol levels (<30%) have yet to be demonstrated due to technical problems with the new system
- Rhodium catalyst used to attain equilibrium levels of H₂ with and without added steam
- Catalyst deactivation and regeneration under current base line conditions are important issues in results to date
- Feedstock effects are under study
- Experimental results used as a guideline for ASPEN simulations

Project Timeline

ID	Task Name	2005	2006	2007	2008	2009	2010	2011	2012
1	Bio-Oil Volatilization								
2	Processing Options			<u>∔</u>					
3	Modification and Characterization								
4	Injector Development		1						
5	Coking Studies		1						
6	Go / No Go on Bio-Oil performance			5/31					
7	Oxidative Cracking								
8	Proof of Concept								
9	Reduce Catalyst Loading by 50%		6/3	0					
10	Partial Oxidation Database								
11	Modeling and Optimization					h i			
12	Jon Marda Thesis					12/31			
13	Catalytic Auto-Thermal Reforming		\sim						
14	Catalyst Screening								
15	Catalyst Process optimization								
16	Demonstrate catalyst performance consistent with \$3.80/gge				5/30				
17	Catalyst Mechanistic Studies								
18	Integrated Separation								
19	Concept Evaluation				ц.				
20	Materials Evaluation								
21	Integrated Laboratory System Experiment					Ĺ			
22	Go / No Go on Conceptual Design						ک ا ۲	3/31	
23	Systems Engineering								
24	Oxygen, Steam and Heat Integration								
25	Engineering Design and Construction								
26	Prototype System Developed							5/31	
27	Heat and Mass Balances								
28	Process Upsets								
29	Long Duration Runs								
30	Demonstrate Distributed Hydrogen Production from								S 9
	Bio-Oil for \$3.8/gge								
31	Safety Analysis								\sim
32	Review and Analysis of Pressure, O2, H2								
33	Systems Integration							1	

Future Work

- FY2008
 - Reduction of methanol addition
 - Continued catalyst testing (deactivation & poisoning)
 - Feed, Temperature, composition, Steam, O2, WHSV
 - Bench-scale system development
 - Gas Phase Temperature effects 600°C to 700°C
 - Model compound experiments and kinetic modeling
 - Continued Aspen simulations
- FY 2009:
 - Integrated laboratory experiment
 - Optimization work continues
 - Tests for long-term catalyst testing
- FY 2010: "Go/no-go" on conceptual design
- FY 2011: Prototype system
- FY 2012: Long duration runs

