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Overview
Timeline

• 6-1-2005
• 5-31-2009
• 70%

Barriers
• U. High-Temperature 

Thermochemical
Technology

• V. High-Temperature 
Robust Materials

• W. Concentrated Solar 
Energy Capital Cost

Partners
Swiss Federal Institute of Technology

University of Nevada – Las Vegas

•Total Project Funding

$797,702

$199,426 Contractor share

•Funds received in FY07 

$  420,000

•Funds received in FY08

$  102, 298

Budget



Objectives

• Research and develop a cost effective 
Mn2O3/MnO solar-thermal thermochemical
cycle through theoretical and experimental 
investigation

• Based on the above, develop a process 
flow diagram and carry out an economic 
analysis of the best process option



Mn2O3/MnO Cycle
H2O → H2 + ½ O2

Mn2O3

2MnO

2 NaOH

2NaMnO2

H2

½ O2

> 1835 K

900 K

> 325 K

H2O
(1) Sturzenegger, M., et al., Solar hydrogen from a 

manganese oxide based thermochemical cycle. Journal 
De Physique Iv, 1999. 9(P3): p. 331-335.



Approach

• Thermodynamic assessment of the cycle
• Experimental investigation

– Investigate Mn2O3 dissociation and mechanism
– Investigate H2 generating step
– Investigate ways in which to recover NaOH

after H2 generating step
– Develop alternative methods in which to close 

the cycle
• Use H2A framework to economically 

evaluate the cycle



Technical Accomplishments / Progress 
/ Results

• Found a probable mechanism for 
manganese oxide dissociation

• Used mixed manganese oxides to study H2
generation and NaOH recovery

• Investigated solid state synthesis of mixed 
oxide production

• Completed initial PFD



Reaction Kinetics From a TGA
• Used TGA to understand mechanism and 

derive initial reaction kinetics
– Reaction proceeds in two steps

3Mn2O3 → 2Mn3O4 + ½ O2→ 6MnO + O2
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TGA Mass Trace
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Mass Trace with Mass Spec Data
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TGA Mechanism Progress

• An Avrami-Erofeev type mechanism is 
hypothesized  to control both reactions
– Parameters were calculated

• Hypothesized diffusion resistances control 
part of the Mn3O4 → 3MnO + ½O2 transition



Mn2O3 Dissociation in an AFR

• Study manganese oxide 
dissociation in an Aerosol Flow 
Reactor
– Diffusion resistances are limited
– Reactor ideal for high volume 

processes
• Understand how oxygen can 

affect the reaction



Reactor Conversions
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XRD Spectra 1400 oC
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Reactant Regeneration Step

– 80 – 90% of NaOH can be removed with H2O
– High energy requirement

2 α-NaMnO2 + H2O →2 NaOH + Mn2O3

Issue: NaOH recovery

Solution: Mixed Manganese Oxides
– Rationale: Iron-analog NaFeO2 can be hydrolyzed 

completely
– Test ratios Mn/Fe and Mn/Zn oxides 



NaOH Recovery
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Synthesis of Mixed Metal Oxides
• Solid state synthesis

– Provides control over composition 
– High temperature required
– Large quantities easy to synthesize
– Simple procedure

• Method
1.Mill stoichiometric amounts of metal oxides
2.Heat treat



XRD Spectra of Mn0.75Fe0.25O
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H2 Generation From Mixed Oxide
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2nd and 3rd Steps Demonstrated
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Mixed Metal Oxide Solar Thermal Cycle
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ZnMn2O4/ZnMn2O3 – Process Flow Diagram



H2A Specifications
• Produce 100,000 kg H2

per day at 300 psi
• 2012 startup at current 

inflation rate 2.4%
• 40 year economic 

analysis period
• Hydrogen cost goal of $2-

3 per kg

Economic 
Sensitivities

Carrier gas (Argon vs. Air)
• Best Case: Oxygen 

Transport Membrane
Heat recovery (Molten Salt)

• Heat feed stream
• Send steam to multiple 

effect evaporator
• Drive turbine to make 

electricity
NaOH recovery 

• Improve chemistry to 
reduce water requirement

Compression
• Vacuum pump to draw off 

H2



Future Work
• Testing of Mn2-xZnxO3 dissociation

– Evaluate whether reaction mechanism is the 
same as Mn2O3

• Continue work on mixed manganese oxide 
synthesis

• Gain better understanding of H2 generation 
with mixed manganese oxides

• Update process flow diagram with new results 
to reassess the Mn2-xZnxO3 /Mn1-xZnxO cycle



Conclusions/Summary

• A reaction mechanism has been 
hypothesized for Mn2O3 dissociation

• Mixed manganese oxides have been shown 
to improve the product recovery steps

• Experimental investigation using a mixed 
manganese oxide is ongoing
– Mn/Zn Oxide

Significant progress has been made 
with the Mn2O3/MnO cycle
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