

Fundamentals of a Solar-thermal Mn₂O₃/MnO Thermochemical Cycle to Split Water

Todd Francis, Freya Kugler, Oliver Kilbury, Paul Lichty, Melinda Channel, Casey Carney, Hans Funke, Roger Rennels & Alan Weimer

University of Colorado – Boulder 11 June 2008

Project ID No. PDP1

This presentation does not contain any proprietary or confidential information

Overview

Timeline

- 6-1-2005
- 5-31-2009
- 70%

Budget

•Total Project Funding

\$797,702

\$199,426 Contractor share

- •Funds received in FY07
 - \$ 420,000
- •Funds received in FY08

\$ 102, 298

Barriers

- U. High-Temperature Thermochemical Technology
- V. High-Temperature Robust Materials
- W. Concentrated Solar Energy Capital Cost

Partners

Swiss Federal Institute of Technology

University of Nevada – Las Vegas

- Research and develop a cost effective Mn₂O₃/MnO solar-thermal thermochemical cycle through theoretical and experimental investigation
- Based on the above, develop a process flow diagram and carry out an economic analysis of the best process option

Approach

- Thermodynamic assessment of the cycle
- Experimental investigation
 - Investigate Mn_2O_3 dissociation and mechanism
 - Investigate H₂ generating step
 - Investigate ways in which to recover NaOH after H₂ generating step
 - Develop alternative methods in which to close the cycle
- Use H2A framework to economically evaluate the cycle

Technical Accomplishments / Progress / Results

- Found a probable mechanism for manganese oxide dissociation
- Used mixed manganese oxides to study H₂ generation and NaOH recovery
- Investigated solid state synthesis of mixed oxide production
- Completed initial PFD

Reaction Kinetics From a TGA

- Used TGA to understand mechanism and derive initial reaction kinetics
 - Reaction proceeds in two steps
- $3Mn_2O_3 \rightarrow 2Mn_3O_4 + \frac{1}{2}O_2 \rightarrow 6MnO + O_2$

TGA Mass Trace

Mass Trace with Mass Spec Data

TGA Mechanism Progress

- An Avrami-Erofeev type mechanism is hypothesized to control both reactions
 - Parameters were calculated
- Hypothesized diffusion resistances control part of the $Mn_3O_4 \rightarrow 3MnO + \frac{1}{2}O_2$ transition

Mn₂O₃ Dissociation in an AFR

- Study manganese oxide dissociation in an Aerosol Flow Reactor
 - Diffusion resistances are limited
 - Reactor ideal for high volume processes
- Understand how oxygen can
 affect the reaction

Reactor Conversions

Conversions ranged between 50 and 75%. Highest conversions achieved with high temperature and gas flow rate.

XRD Spectra 1400 °C

Reactant Regeneration Step

$\textbf{2} \alpha \textbf{-NaMnO}_2 \textbf{+} \textbf{H}_2\textbf{O} \rightarrow \textbf{2} \textbf{NaOH} \textbf{+} \textbf{Mn}_2\textbf{O}_3$

Issue: NaOH recovery

- -80 90% of NaOH can be removed with H₂O
- High energy requirement

Solution: Mixed Manganese Oxides

- Rationale: Iron-analog NaFeO₂ can be hydrolyzed completely
- Test ratios Mn/Fe and Mn/Zn oxides

- Solid state synthesis
 - Provides control over composition
 - High temperature required
 - Large quantities easy to synthesize
 - Simple procedure
- Method
 - 1.Mill stoichiometric amounts of metal oxides2.Heat treat

XRD Spectra of Mn_{0.75}Fe_{0.25}O

ICP of Mixed Mn Oxides

2nd and 3rd Steps Demonstrated

ZnMn₂O₄/ZnMn₂O₃ – Process Flow Diagram

H2A Specifications

- Produce 100,000 kg H₂ per day at 300 psi
- 2012 startup at current inflation rate 2.4%
- 40 year economic analysis period
- Hydrogen cost goal of \$2-3 per kg

Economic Sensitivities

Carrier gas (Argon vs. Air)

 Best Case: Oxygen Transport Membrane

Heat recovery (Molten Salt)

- Heat feed stream
- Send steam to multiple effect evaporator
- Drive turbine to make electricity

NaOH recovery

 Improve chemistry to reduce water requirement

Compression

 Vacuum pump to draw off H₂

Future Work

- Testing of Mn_{2-x}Zn_xO₃ dissociation
 - Evaluate whether reaction mechanism is the same as Mn_2O_3
- Continue work on mixed manganese oxide synthesis
- Gain better understanding of H₂ generation with mixed manganese oxides
- Update process flow diagram with new results to reassess the Mn_{2-x}Zn_xO₃/Mn_{1-x}Zn_xO cycle

Conclusions/Summary

Significant progress has been made with the Mn₂O₃/MnO cycle

- A reaction mechanism has been hypothesized for Mn₂O₃ dissociation
- Mixed manganese oxides have been shown to improve the product recovery steps
- Experimental investigation using a mixed manganese oxide is ongoing

- Mn/Zn Oxide