

... for a brighter future

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Distributed Reforming of Renewable Liquids via Water Splitting using Oxygen Transport Membrane (OTM)*

<u>U. (Balu) Balachandran</u>, T. H. Lee, C. Y. Park, J. E. Emerson, J. J. Picciolo, and S. E. Dorris Energy Systems Division

June 11, 2008

E-mail: balu@anl.gov

*work supported by U.S. DOE, EERE - OHFCIT

Project ID # PDP22

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

DOE Hydrogen Program Review, June 9-13, 2008.

Overview

Timeline

Project Start Date: May 2005 Project End Date: Project continuation and direction determined annually by DOE 15% Complete

Barriers

- •(A) Reformer Capital Cost Target: \$1.0 M by 2012
- •(C) Operation and Maintenance Efficiency Target: 72.0% (LHV) by 2012 •(R) Cost

Target: \$3.80 gge by 2012

Budget

Total Project Funding -DOE share: 100% Funding received in FY07: \$350K Funding for FY08: \$400K

Partners

Interactions: Membranes being developed also address various cross-cutting barriers. Work is co-sponsored by FE-NETL. Project Lead: Argonne National Laboratory

Objectives

Overall objective is to develop a compact, dense, ceramic membrane reactor that enables efficient and cost-effective production of hydrogen by reforming bio-derived liquid fuels using pure oxygen formed by water splitting and transported by the membrane. (During FY05 – FY07, the objective was to reform natural gas. In FY 08, the focus was changed to bio-derived liquids).

Objectives for FY08 were to optimize the performance of the oxygen transport membrane (OTM) and demonstrate reforming of ethanol (EtOH).

Relevance: Membrane technology provides the means to attack barriers to the development of small-scale hydrogen production technology.

Milestones

Expected Date of Completion	Milestone
March 2007	Optimize OTM performance by doping and controlling microstructure, and measure H ₂ production rate.
June 2007	Fabricate thinner membranes to enhance H ₂ production rate.
September 2007	Refine system analysis using measured OTM performance to determine requirements of cost-effective reactor.
December 2007	Enhance performance of thin (<0.1 mm) OTMs by controlling surface microstructure.
March 2008	Evaluate chemical stability of OTMs in short-term (≤100 h) exposure to reaction conditions.
September 2008	Reform liquid fuels (EtOH) using OTM.

Approach

Reforming of Fuels via Water Splitting using OTM

-Fuel is reformed using oxygen formed by water splitting and transported by the OTM.
-H₂ is produced on both sides of the OTM.
-Predominant products of ethanol reforming: H₂, CO, CO₂, CH₄, C₂H₄, C₂H₆, H₂O
-Non-Galvanic
-No electrical circuitry or power supply

-Single material, i.e., no electrodes needed

$H_2O \Leftrightarrow H_2 + 1/2 O_2$

- Very low H₂ and O₂ concentrations are generated even at relatively high temperatures (0.1% H₂ and 0.042% O₂ at 1600°C).
- Significant amounts of H₂ & O₂ can be generated at moderate temperatures if the reaction is shifted toward dissociation by removing either O₂, H₂, or both.

Uniqueness of Argonne's Approach

Pure oxygen (produced by steam dissociation & transported by OTM) is used for reforming rather than air

- avoids NO_x formation/separation
- Heat is generated where it is needed
 - simplifies heat exchanger issues
- Incorporates breakthrough separation technology
- Reforming process is intensified by combining unit operations
 offers high energy efficiency
- Reduces foot-print area for the reformer

Skid-mounted units can be produced using currently available, low-cost, high-throughput manufacturing methods

- Compact design reduces construction costs
- Uses robust membrane systems that require little maintenance

Specific Tasks for FY08

- Optimize performance of dense oxygen transport membrane (OTM) by doping and controlling OTM's microstructure.
- Fabricate thinner (≤25 µm) OTM to enhance its hydrogen production rate.
- Fabricate/test small (\approx 3 in. long) tubular OTM.
- Demonstrate reforming of EtOH using OTM.

Schematic of Experimental Setup – Disk-Type Membrane

- Flow rates: ≈200 cc/min
- OTM sample size: ≈20 mm dia.
- Feed concentration: H₂/He; 5% CH₄/He; 10% CO/CO₂; ≈5% EtOH/N₂(or He)
- H₂ production rate: ≈18 cc/min/cm²
- Temperature: 500-900°C

Accomplishments/Progress/Results Optimizing OTM Performance by Controlling Microstructure

SFC2 sintered in 200 ppm H₂/N₂

SFC2 sintered in Air

 Sintering atmosphere profoundly affects OTM's microstructure.

pH₂O on H₂-generation side (atm)

 OTMs with a fine, equiaxed microstructure give a much higher hydrogen production rate.

Accomplishments/Progress/Results (Cont'd.) Optimizing OTM Performance by Doping

 Proper doping eliminates phase transition and gives high hydrogen production rate at low temperatures (<825°C).

Accomplishments/Progress/Results (Cont'd.) Fabricating Thinner OTMs to Enhance Hydrogen Production Rate

Porous layer on one surface

Porous layer on both surfaces

• Reducing OTM thickness increases hydrogen production rate, but porous layers are needed to overcome limitations from surface reaction kinetics.

Accomplishments/Progress/Results (Cont'd.) Short-Term Chemical Stability of Tubular Membrane

• OTM is stable during short-term (≈900 h) ethanol reforming test.

Accomplishments/Progress/Results (Cont'd.) Reforming of Ethanol using OTM via Water Splitting

• Total H₂ produced increased as partial pressure of steam increased.

Accomplishments/Progress/Results (Cont'd.) Flow Diagram for Hydrogen Production by Reforming Methane/Renewable Liquids Using OTM Membrane via Water Splitting

• A conceptual flow diagram was established for performing H2A analysis.

Accomplishments/Progress/Results (Cont'd.) Preliminary Analysis of Hydrogen Cost vs. Station Capacity (Reforming of Ethanol via Water Splitting using OTM)

Accomplishments/Progress/Results (Cont'd.)

Preliminary Analysis of Total Hydrogen Cost vs. Ethanol Cost Reforming of Ethanol using OTM via Water Splitting (@1500 Kg/day)

• Total cost of H_2 increases from \$3.19 to \$4.96/kg when cost of ethanol is increased from \$1 to \$2/gal.

Accomplishments/Progress/Results (Cont'd.)

Preliminary Analysis of Hydrogen Cost vs. Station Capacity (Reforming of natural gas using OTM via Water Splitting)

• Total cost of H_2 by reforming NG using OTM via water splitting is \$1.85/kg.

Future Work

- Reform ethanol using OTM......09/2008
 Study effects of EtOH concentration, gas flow rates, OTM thickness
- Evaluate long-term (200-1000 h) stability of membranes......03/2009
 Select OTM composition(s) and reaction conditions
- Measure H₂ production rates of newly developed membranes....09/2009
 Rank performance relative to existing OTMs
- Revise H2A analysis using updated OTM performance......09/2009

SUMMARY

- Oxygen transport membrane (OTM) materials are being developed for distributed reforming of renewable liquids via water splitting.
- Hydrogen production rate of ≈18 cm³ (STP)/min-cm² was measured at 900°C (using 25 µm thick membrane).
- Production rate increased with increasing steam pressure, increasing pO₂ gradient, and with decreasing membrane thickness.
- Preliminary H2A analysis showed the following results for a station capacity of 1500 kg/day of H₂:
 - H_2 production cost including cost of ethanol (@ \$1.07/gal) = \$2.60/kg
 - Total cost of H₂ (including costs of production, ethanol, compression, storage, & dispensing) = \$3.31/kg
 - Total cost of H₂ increased from \$3.19 to \$4.96/kg when cost of ethanol increased from \$1 to \$2/gal
 - Total capital investment per station = \$3.2 M
 - Annual operating cost of \$1.8 M of which \$1 M is for ethanol @ \$1.07/gal

