

Biological Systems for Hydrogen Photoproduction

Maria L. Ghirardi, P.I. NREL June 11, 2008

Team members: Mike Seibert, Paul King, Sergey Kosourov, Christine English, Sharon Smolinski

Project ID# PDP 26

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: FY00
- Project end date: continuing
- Percent complete: N/A

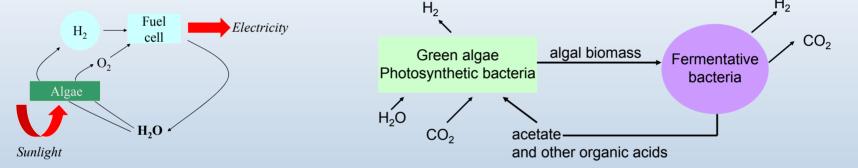
Barriers

- Barriers addressed
 - Production Barrier: Continuity of H₂ production.

Parameters	Current Status	2013 Target	Maximum Potential
Duration of continuous photoproduction O_2 tolerance (half-life in air)	90 days (-S, anaerobic) 6 days (-S, aerobic, immobilized) ~ 4 min after exposure to air (clostridial enzyme)	10 min (aerobic)	12 hours (aerobic)

Budget

- Funding received in FY08: \$2,000K
- Funding allocated for FY09:
 \$0


Partners

- Dr. Anatoly Tsygankov, Russian Academy of Sciences, Pushchino, Russia.
- Dr. Michael Flickinger, North Carolina State University.
- Dr. Klaus Schulten, The Beckman Institute, University of Illinois.
- Dr. Mace Golden, GoldenBioenergy, CO

Objectives

Develop and optimize aerobic photobiological systems for the production of H₂ from water (subtask 1); utilize the sulfur-deprivation platform to address biochemical and engineering issues related to photobiological H₂ production (subtask 2); integrate photobiological with fermentative organisms to more efficiently utilize the solar spectrum and the substrates/products from each reaction (subtask 3).

FY2007/08:

- <u>Subtask 1</u>: Engineer a H_2 -producing catalyst ([FeFe]-hydrogenase) that has an extended half-life, following exposure to O_2 .
- <u>Subtask 2</u>: Demonstrate improvements in the light conversion properties of a H₂-producing anaerobic algal system by immobilizing the cultures at high cell density on a thin-film matrix;
- <u>Subtask 3</u>: Test the ability of H₂-producing, fermentative organisms to consume algal biomass; optimize photosynthetic bacterial H₂ production.

NREL National Renewable Energy Laboratory

Milestones

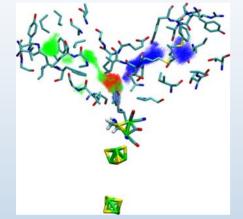
	Milestones	Completion Date	
3.3.1.	Participate in DOE's annual program review	06/08	completed
3.3.2	Generate and test 5 new mutants for O ₂ tolerance	01/08	completed
3.3.3	Determine the light conversion efficiency of stacked photobioreactors vs. single photobioreactors	03/08	completed
3.3.4	Test the performance of immobilized ATPase mutants	06/08	completed
3.3.5	Test the performance of immobilized antenna mutant	10/08	
3.3.6	Introduce and test the expression of a clostridial hydrogenase gene in <i>Chlamydomonas</i>	08/08	
3.3.7	Design and test a new DNA construct for E. coli expression of hydrogenases	12/08	

Plan and Approach

Subtak 1:

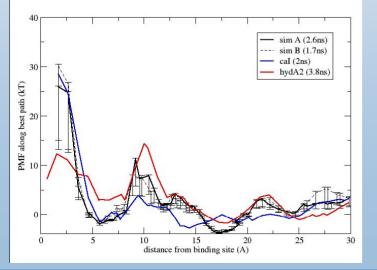
- 1. Apply site-directed mutagenesis to a bacterial hydrogenase; express mutant enzymes in *E. coli* and test mutants for increased tolerance to O₂;
- 2. Initiate random mutagenesis/higher-throughput approaches for generation of hydrogenases with increased tolerance to O_2 ; express mutant enzymes in *E. coli* and test mutants for increased tolerance to O_2 ;
- 3. Develop DNA plasmids to express heterologous wild-type or mutated hydrogenases in *Chlamydomonas reinhardtii* in order to test O₂-tolerance in the alga.

Subtask 2:


- 1. Determine the rates and light conversion efficiency of H₂ production by *C. reinhardtii* cultures immobilized in alginate films;
- 2. Test the performance of truncated antenna and proton channel mutants under the same conditions;

Subtask 3: the continuation of this subtask will be determined by the results of a techno-economic analysis to be performed in FY08-09

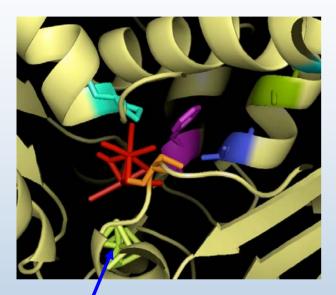
- 1. Test the advantages of using single or stacked reactors of green algae and photosynthetic bacteria for increased H₂ production per illuminated area;
- 2. Determine whether a H₂-producing, fermentative consortium can utilize spent algal and photosynthetic bacteria biomass;
- 3. Find a consortium of thermophilic organisms that is able to ferment organic wastes, produce organic acids to support photosynthetic bacteria growth, and produce H₂ at high efficiency.



Subtask 1. Site-directed mutagenesis (C. English P. King, and M. Seibert)

Two pathways for O_2 diffusion from the surface of the hydrogenase protein to its catalytic site were previously identified by computational simulations (molecular dynamics and solvent accessibility). Single and double mutants along the two pathways were generated to sterically hinder O_2 diffusion to the catalytic site. All mutants tested showed loss of activity and increased sensitivity to O_2 .

O2 PMF along pathway A

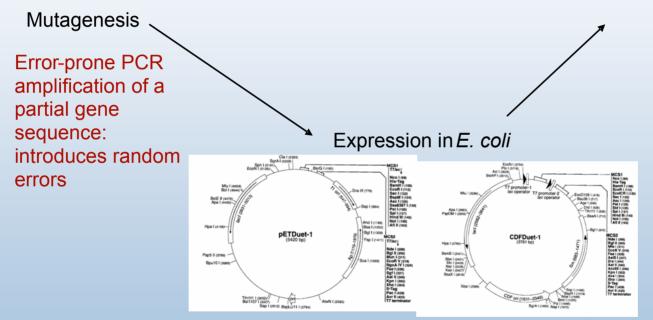


Computational simulations of the mean potential energy required to move a molecule of O_2 from the surface of the protein (right side of the graph) to the catalytic cluster (left side of the graph) suggested the presence of a high energy barrier a few Å from the cluster, at the junction of the two gas pathways (see red region in the top figure). We attempted to engineer hydrogenases in which this barrier was increased by substitution with larger residues.

Subtask 1. continued

H-cluster

Amino acid residues line a cavity that is likely to form the high-energy barrier described above in WT strains (see graph). One of the residues was mutated to a much larger residue. The mutated enzyme was expressed in *E. coli*, and its activity was measured in membrane-free cell extracts. For this work, we prepared enzyme without the addition of chemical reductant. Both wild-type and mutant disclosed more than one level of O_2 tolerance, characteristic of a distribution of redox states of the enzyme. These distribution of states differ for the mutant compared to wild-type, affecting the measured rate of O_2 inactivation. It is not immediately clear how this new discovery could impact the HFC&IT project.


These new results underscore the complexity of the hydrogenase system with respect to factors that control O_2 tolerance (redox state of the enzyme, O_2 diffusion, nature of the ligands to the catalytic center), and point out the need for further research to deconvolute the influence of these factors on the measurement of O_2 tolerance of the enzyme.

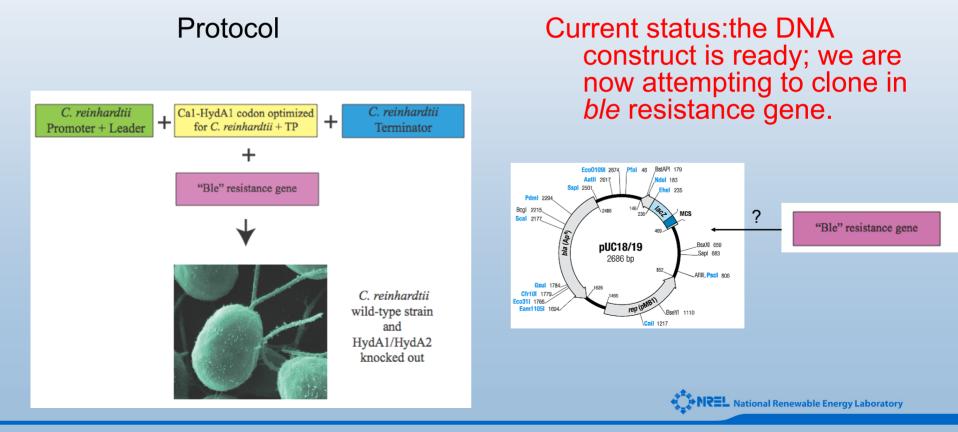
NREL National Renewable Energy Laboratory

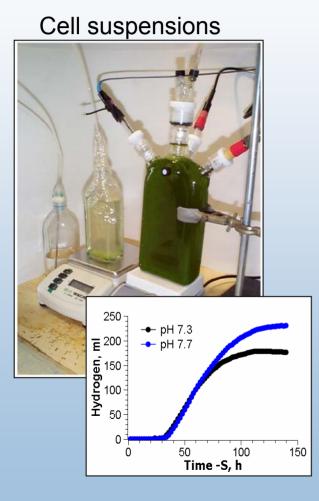
Subtask 1. Random mutagenesis/higher throughput assay (P. King, M. Golden)

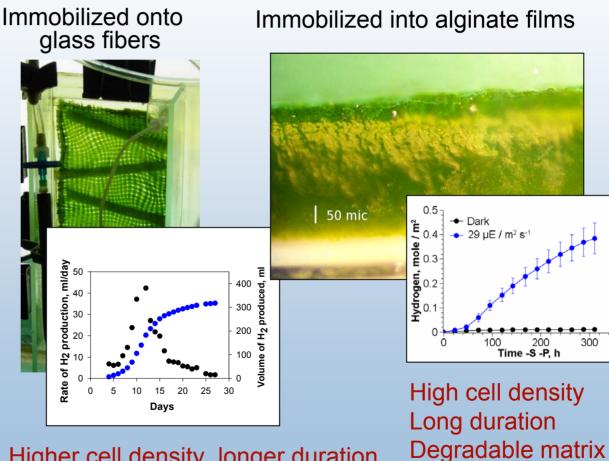
Rationale: to improve the probability of finding O_2 -tolerant mutants

Screening

An automated gas chromatograph assay will be developed to screen for O₂-tolerant **mutants**


The *hydDA* gene (encoding for the structural hydrogenase protein from *C. acetobutylicum*) and the gene encoding for one of its assembly proteins, hydE, will be incorporated into the multiple cloning site (MCS) of the pETDuet-1 plasmid (left), and the hydF and hydG genes, encoding for the other two assembly proteins will be incorporated into the MCS of the CDFDuet-1 plasmid (right); the hya E. coli promoter will be used instead of the T7 promoter to allow anaerobic induction of all heterologous genes.


Subtask 1. Expression of clostridial hydrogenase in *C. reinhardtii* (P. King, C. English)


Rationale: the clostridial [FeFe]-hydrogenase is highly homologous to the algal hydrogenase, and it is ~ 400X more tolerant to O_2

Subtask 2. Light-conversion efficiency of alginate-immobilized algae (S. Kosourov, M. Flickinger, M. Seibert)

Higher cell density, longer duration Non-degradable matrix

Low cell-density, short duration

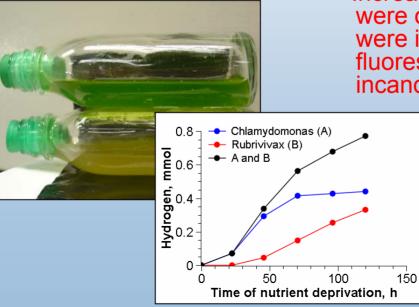
Subtask 2. continued

	Light Intensity (µE•m ⁻² •s ⁻¹)	Maximum specific rate of H ₂ production (μmoles-mg Chl ⁻ ¹ •h ⁻¹)	Average specific rate of H ₂ production (μmoles-mg Chl ⁻¹ -h ⁻¹)	Maximum light conversion efficiency into H ₂ (%)	Average light conversion efficiency into H ₂ (%)
Suspension	2x 150 (two illuminated surfaces)	9.44	3.79	0.53	0.21
Glass fibers	120	6.4	2.37	0.36	n.a.
Alginate films	29	4.71	2.43	2.17	1.28

• Funded by the U.S. AFOSR

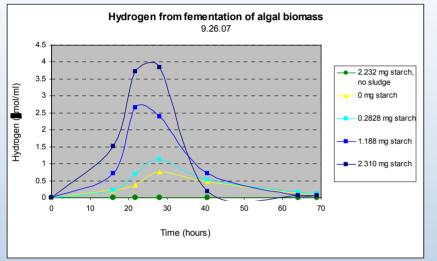
Cell biomass in formulation, g	Average total Chl concentratio n, μg per 6 cm ² screen	The total yield of H_2 in an atmosphere of argon, mol m ⁻² (A)	The total yield of H ₂ in an atmosphere of air, mol m ⁻² (B)	Hydrogen production in (B) as a % of (A)
0.125	43 +/- 3	0.06 +/- 0.01	0.04 +/- 0.01	67
0.25	90 +/- 12	0.14 +/- 0.05	0.08 +/- 0.02	57
0.5	188 +/- 20	0.26 +/- 0.06	0.14 +/- 0.02	54
1	278 +/- 44	0.30 +/- 0.02	0.14 +/- 0.02	47
2	402 +/- 38	0.27 +/03	0.02 +/- 0.01	7

Substantially increased light conversion efficiencies



Subtask 3. Stacked photobioreactors of green algae and photosynthetic bacteria (S. Kosourov, P.C. Maness, M. Seibert)

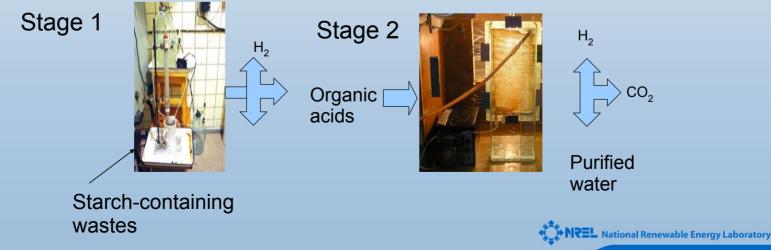
Rationale: Green algae absorb visible light (400-700 nm); photosynthetic bacteria have absorption peaks in the infra-red (750-900 nm); by stacking two photobioreactors one is able to extend the portion of the absorbed spectrum and thus increase light conversion efficiency to H_2 .



Increased rates of H_2 photoproduction were observed when the stacked cultures were illuminated with a combination of fluorescent (below 700 nm) and incandescent (including infra-red) lamps.

Subtask 3. Fermentative H₂-production from algal biomass (S. Smolinski, P.C. Maness, S. Kosourov)

The amount of starch present in algal biomass harvested at the end of sulfurdeprivation experiments was determined, and different amounts of biomass were added to a fermentor. Fermentative H_2 production was demonstrated and the total amount of H_2 produced was a function of the amount of biomass added.


The high molar yield of H_2 /glucose observed (see last column of the table) was probably due to the capability of the fermentative organism to degrade other biomass components, such as proteins and/or lipids.

Algal biomass available (mg DW)	Algal protein available (mg)	Algal starch available (mg glucose)	Algal starch consumed (mg glucose)	Maximum H ₂ accumulated in headspace (μmol)	μmole H₂/μmol glucose consumed
23.0	7.64	0.28	0.21	5.11	4.29
68.9	22.9	1.19	1.18	26.51	4.04
137.8	45.7	2.31	2.15	43.65	3.67

Subtask 3. H₂-production by photosynthetic bacteria (A. Tsygankov, M. Seibert)

- Samples were taken from a variety of sites in Russia, and the ability of fermentative consortia from each sample to simultaneously ferment various starch-containing wastes and produce H_2 was tested (stage 1, below). Conditions were optimized for H_2 production at 37C;
- The inhibitory effects of organic acids on photosynthetic bacterial growth and H_2 production is being studied in order to better define the type of photosynthetic bacteria that will be used in stage 2 (below);
- A quick procedure for immobilization of photosynthetic bacteria on glass fibers for stage 2 was devised.

Summary

- **Subtask 1:** (1) We discovered the existence of different states of the clostridial enzyme with differences in O₂ sensitivity and whose distribution varies between wild-type and mutants; a procedure for random mutagenesis/high throughput screening is being developed; DNA constructs for expression of clostridial hydrogenases in *C. reinhardtii* are being made.
- Subtask 2: (1) High light conversion to H₂ efficiencies have been demonstrated when sulfur-deprived algae are immobilized into alginate films; (2) the film was shown to protect the cultures from inactivation by atmospheric O₂ and partial rates of H₂-production were measured even under aerobic conditions.
- Subtask 3: (1) Increased rates of H₂ photoproduction were observed when stacked cultures of green algae and photosynthetic bacteria were illuminated with a combination of fluorescent (below 700 nm) and incandescent (including infra-red) lamps; (2) fermentative H₂-production was detected when algal biomass was used as the substrate; (3) high yields of H₂/glucose suggest that other cell components (besides glucose) are also being fermented.

Summary

- **Subtask 1:** (1) We discovered the existence of different states of the clostridial enzyme with differences in O₂ sensitivity and whose distribution varies between wild-type and mutants; a procedure for random mutagenesis/high throughput screening is being developed; DNA constructs for expression of clostridial hydrogenases in *C. reinhardtii* are being made.
- Subtask 2: (1) High light conversion to H₂ efficiencies have been demonstrated when sulfur-deprived algae are immobilized into alginate films; (2) the film was shown to protect the cultures from inactivation by atmospheric O₂ and partial rates of H₂-production were measured even under aerobic conditions.
- Subtask 3: (1) Increased rates of H₂ photoproduction were observed when stacked cultures of green algae and photosynthetic bacteria were illuminated with a combination of fluorescent (below 700 nm) and incandescent (including infra-red) lamps; (2) fermentative H₂-production was detected when algal biomass was used as the substrate; (3) high yields of H₂/glucose suggest that other cell components (besides glucose) are also being fermented.

