High-Speed Oil-Free Centrifugal Compressor for Hydrogen Delivery

Hooshang Heshmat, PhD Mohawk Innovative Technology, Inc. June 10, 2008

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project ID # PDP28

Timeline

- June 9, 2008
- June 8, 2011
- 0 Percent Complete

Budget*

- Total proposed project funding
 - \$2,992,416 DOE
 - \$1,149,253 MiTi[®]/MHI
- \$0 FY07 Funding
- \$TBD FY08 Funding

Barriers

- Hydrogen Delivery Compressor
 - Reliability
 - System Cost
 - Efficiency of H2 Gas Compression

Partners

- Lead: Mohawk Innovative Technology, Inc. (MiTi[®])
- Mitsubishi Heavy Industries

*Project not yet started contract negotiations in progress

- Demonstrate key technologies needed to develop reliable and cost effective centrifugal compressors for hydrogen delivery
 - Flow to 1,000,000 kg/day
 - Pressure rise to 300-500 psig
 - Contaminant-Free/Oil-Free

		Target	
Category	2005 Status	FY2012	FY2017
Reliability	Low	Improved	High
Energy Efficiency	98%	98%	>98%
Capital Investment (\$M) (based on 200,000 kg of H2/day)	\$15	\$12	\$9
Maintenance (% of Total Capital Investment)	10%	7%	3%
Contamination	Varies by Design		None

Hydrogen, Fuel Cells & Infrastructure Technologies Program October 2007

Project

Project Milestones

Month/Year	Milestone or Go/No-Go Decision
Oct-08	Project Milestone: Complete preliminary modular centrifugal compressor frame design to achieve pressure and flow. Select stage for detailed design, fabrication and test.
July-09	 Project Milestone: Complete single stage compressor design including inlet, impeller, diffuser, return channel. Complete oil-free bearing and seal mechanical component system designs

Oct-09 **DOE Milestone:** Down select novel compression technology for hydrogen delivery.

4

Project Plan

Preliminary System DesignDetailed Design & FabricationTest, Evaluat Refine DesiRefine System ConfigurationSingle Stage CompressorSingle Stage CompressorSingle Stage CompressorMulti-Stage Sizing CompressorSingle-Stage Compressor, Inlet, Diffuser & PoturnVerify High- Speed Dynamics	timeline			
Refine System ConfigurationSingle Stage CompressorSingle Stage CompressorMulti-Stage Sizing CompressorSingle-Stage Compressor, Inlet, Diffuser & PoturnVerify High- Speed Dynamics	Preliminary SystemDetailed DesignDesign& Fabrication		Test, Evaluate & Refine Design	
Multi-Stage Sizing CompressorSingle-Stage Compressor, 	Refine System Configuration	Single Stage Compressor	Single Stage Compressor	
Stage Flow & PressureMeasure ChannelShaft SpeedShaft, Seals & Bearing & Seal RequirementsMeasure CompressorBearing & Seal RequirementsHigh-Speed OperationRefine and Scale Design	Multi-Stage Sizing Compressor Stage Flow & Pressure Shaft Speed Bearing & Seal Requirements	Single-Stage Compressor, Inlet, Diffuser & Return Channel Shaft, Seals & Bearings for High-Speed Operation	Verify High- Speed Dynamics Measure Compressor Performance Refine and Scale Design	

centrifugal compressor through component test

5

DOE Hydrogen Program

- Contract Negotiations In Progress
- Previous Efforts Identified Centrifugal Compressor Configuration Feasibility and Technology Needs
 - Internal MiTi & MHI Company Funding
 - DOE SBIR

Candidate Compressors

Centrifugal Compressor

One Moving Part High Reliability Minimal Contact/Sliding Parts High Efficiency and High Flow

Modular Compressor Concept

Identified Technology Needs

- Required High Speeds Dictate
 - Advanced Centrifugal Compressor
 Aerodynamic and Structural Design
 - High Stresses
 - Efficient and Effective Flow Path
 - High-Speed, Oil-Free Foil Bearings
- Hydrogen Requires
 - Novel Low Loss Seals
 - Low Friction and Long Wear Life Foil Bearing and Foil Seal Hydrogen Compatible Coatings
 - Hydrogen Compatible Materials

Future Work for FY08-FY09

- Refine Multi-Stage/Multi-Frame Compressor Concept
 - Establish Stage Pressure Ratios and Flows
 - Define and Select Optimum Operating Speeds
 - Select One Stage for Detailed Design and Test
- Preliminary Design Review with DOE
- Conduct Detailed Design
 - Establish Flow Path Including Inlet, Impeller, Diffuser and Return Channel Designs Using Established Design Analysis and Computational Fluid Dynamics
 - Design Foil Bearings and Seals Using Coupled Elasto-Hydrodynamic Analysis
 - Design Test Shafting Using Finite Element Rotor-Bearing System Analysis

Project Summary

- This project proposes to demonstrate that advanced and very high-speed, oil-free centrifugal compressors can meet hydrogen delivery needs
- MiTi[®] and MHI have shown analytically that multiple multi-stage very high speed centrifugal compressors operating in series are necessary and feasible.
- A key compressor stage will be designed, fabricated and tested to validate the concept and demonstrate overall system feasibility based upon advanced 3-D aerodynamic designs combined with oil-free compliant foil bearings and close clearance compliant foil seals
- Under this effort, compressor blade tip speeds, and bearing and seal surface velocities exceeding state-of-art will be designed, built and evaluated

Hooshang Heshmat, PhD 518 862-4290 x-12 hheshmat@miti.cc

