Advanced Hydrogen Liquefaction Process

Funding Opportunity Number: DE-PS36-07GO97009

Joe Schwartz Praxair - Tonawanda, NY

DOE Annual Merit Review Meeting June 11, 2008

Copyright © 2008 Praxair Technology, Inc.

This paper was written with support of the U.S. Department of Energy under Funding Opportunity No. DE-PS36-07GO97009. The Government reserves for itself and others acting on its behalf a royalty-free, nonexclusive, irrevocable, worldwide license for Governmental purposes to publish, distribute, translate, duplicate, exhibit and perform this copyrighted paper. This presentation does not contain any proprietary or confidential information.

Project ID PDP-31

DOE Hydrogen Program

Introduction

			Program Timeline					
2008 Budget			7/	/08 - 7/09	7/09-7/1	0	7/10-7/11	
				Phase I	Phase II		Phase III	
Requeste	d S	pent 4/15/08	>	12 Phase I - Feasi	3 bility	4	5	6
\$ 99,71	2 \$	0		 Develop Alternative Hydrogen Liquefaction Processes Validate Ortho-Para Conversion Process Performance 				
\$ 24,92	28 \$	0	>	-			rocess Develop	
\$124,64	•0 \$	0		3 Establish Efficiency 4 Estimate Cap	•	t, and	Material Performan	ce la

Estimate Capital Cost 4

Phase III – Process Performance Evaluation ⊳

Demonstrate Improved Ortho-Para Conversion Process 5

6 Evaluate Potential Cost Reduction and Efficiency Improvement

Barriers Addressed

DOE

Praxair

TOTAL

- C. High Cost and Low Energy Efficiency of Hydrogen Liquefaction \geq
 - Reduced capital cost
 - Improved efficiency
 - Improved overall process by integration

Objectives

Program - Develop a low-cost hydrogen liquefaction system for 30 and 300 tons/day that meets or exceeds DOE targets for 2012

- Improve liquefaction energy efficiency
- Reduce liquefier capital cost
- Integrate improved process equipment invented since last liquefier was designed
- Continue ortho-para conversion process development
- Integrate improved ortho-para conversion process
- Develop optimized new liquefaction process based on new equipment and new ortho-para conversion process

Phase I – Feasibility

- Develop conceptual designs for improved processes
- Validate ortho-para conversion process performance

Hydrogen Liquefaction Targets

Category	2005 Status	2012	2017				
Small-Scale Liquefaction (30,000 kg H ₂ /day)							
Installed Capital Cost (\$)	\$50M	\$40M	\$30M				
Energy Efficiency (%)	70%	75%	85%				
Large-Scale Liquefaction (300,000 kg H ₂ /day)							
Installed Capital Cost (\$)	\$170M	\$130M	\$100M				
Energy Efficiency (%)	80%	>80%	87%				

Liquefied Hydrogen LHV

Efficiency =

Liquefied Hydrogen LHV + Liquefaction Energy

Milestones

> Phase I - Feasibility

- Develop Novel Conceptual Process Designs
- Validate Improved Ortho-Para Performance
- > Phase II Process Development
 - Establish Performance Targets
 - Develop Preliminary Capital Cost Estimate
- > Phase III Performance Evaluation
 - Demonstrate Ortho-Para Performance
 - Validate Capital Cost and Performance
 Improvement

Program Approach

> Build on successful high-risk, low-effort program funded through EMTEC

- \$200,000 program that demonstrated potential for improved ortho-para conversion process
- Enabled Praxair to propose this project to advance hydrogen liquefaction process development
- Incorporate other process improvements beyond improved ortho-para conversion

Phase I Plan

> Process Optimization, Design, and Economics (45%)

• Develop alternative hydrogen liquefaction processes that can optimally integrate new equipment and improved ortho-para process

> Process Equipment Evaluation (30%)

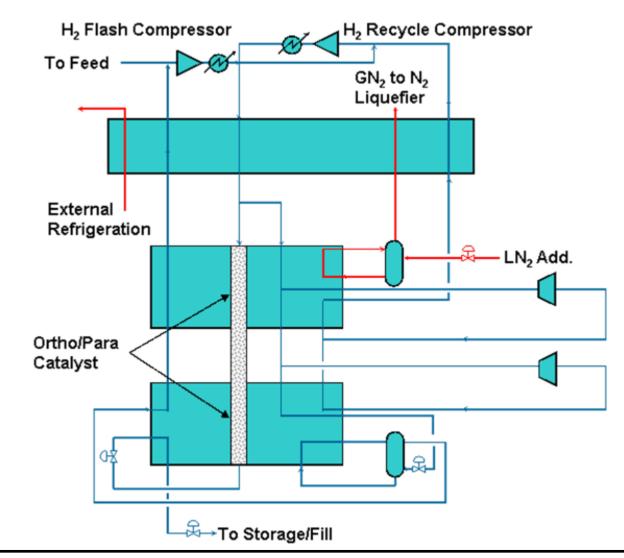
- Evaluate commercially available critical equipment
- Evaluate novel turbomachinery

> Ortho-Para Conversion Optimization (25%)

• Validate process performance in laboratory-scale test facilities

Liquid Hydrogen

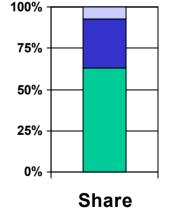
- In the 1960's, liquid hydrogen plants were built to support the Apollo program
 - Space shuttle capacity is 113 tons (383,000 gallons)
 - Saturn V rocket used 100 tons (339,000 gallons)


Photo courtesy of NASA

Foday, liquid hydrogen is used to reduce the cost of hydrogen distribution

- Liquid hydrogen can be transported economically in larger quantities for longer distances than compressed gas
- Liquid hydrogen is used to provide high purity product because impurities condense before hydrogen

Hydrogen Liquefaction Existing Process Flow Diagram


Hydrogen Liquefaction

The plants are very capital intensive

- Infrequent builds make it difficult to reproduce designs
- Large plants have high capital risk
 - Want to avoid unused capacity

The process is very energy intensive

- Typical unit powers are about 12.5 to 15 kWh_e/kg
- Hydrogen lower heating value is about 33 kWh/kg
- Hydrogen boiling point is $20 \text{ K} = -253^{\circ}\text{C} = -423^{\circ}\text{F}$
- Capital cost is more than half of the total

Hydrogen Distribution

Liquid Tanker 4500 kg H₂ Tube Trailer 300 kg H₂

- Both weigh about 80,000 lbs
- Liquid hydrogen might not be the best way to supply the "Hydrogen Economy", but it will play a significant role in the transition period

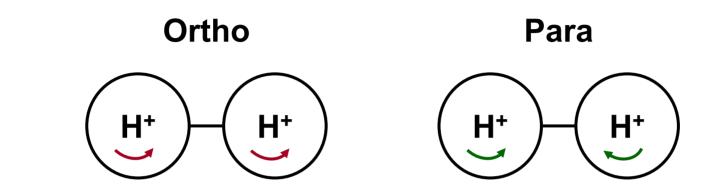
Hydrogen Delivery

> Pipeline (~ 1 billion scfd)

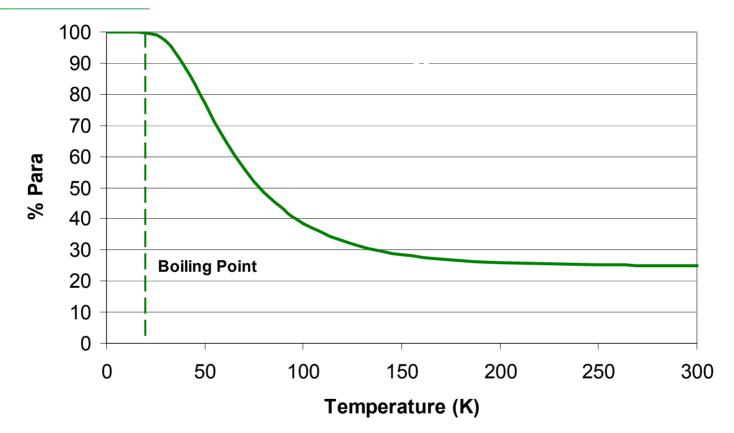
- Refineries and other large hydrogen consumers
- Liquid (~ 10 million scfd)
 - 1.8 million scf/truck
 - Liquid serves an important market segment

> Tube Trailers

- 125,000 scf/truck
- > Cylinders
 - 250 scf/cylinder



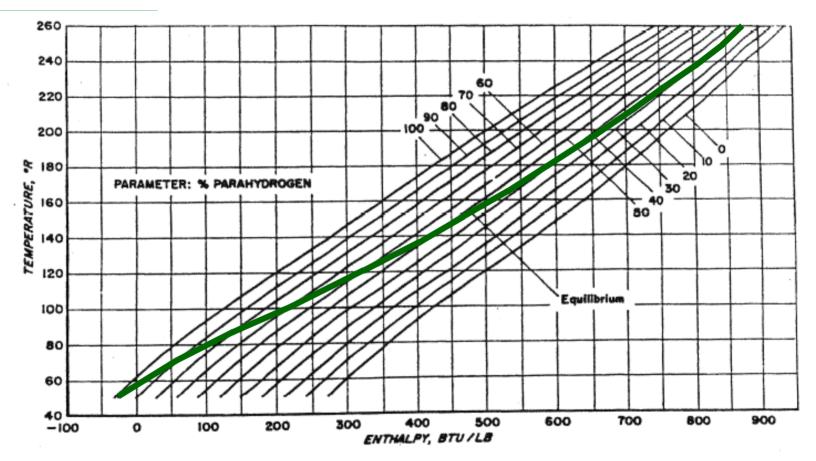
Forms of Molecular Hydrogen



- > Difference is due to proton spin
 - Normal Hydrogen is 75% Ortho, 25% Para
 - Equilibrium Liquid Hydrogen is 0.2% Ortho, 99.8% Para
- Ortho-Para conversion requires 18 45% of the minimum work requirement for liquefaction*
 - Depends on the conversion process used

* From Baker, C. R. and Shaner, R. L. A Study of the Efficiency of Hydrogen Liquefaction, Int. J. Hydrogen Energy, v. 3, p. 321, 1978.

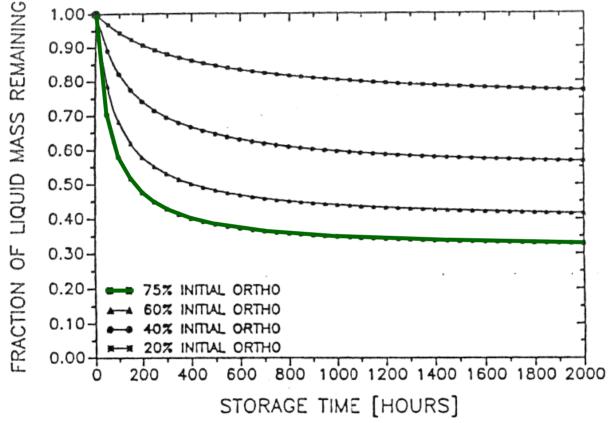
Equilibrium Composition



> Para fraction increases as temperature approaches liquid range

Catalyst is used to reach equilibrium composition during cooling

Ortho-Para Enthalpy


Heat of liquefaction/vaporization is 192 Btu/lb Heat of conversion from n-H₂ to e-H₂ in liquid is higher

From Singleton, A. H. and Lapin, A. Design of Para-Orthohydrogen Catalytic Reactors, Adv. Cryo. Eng., v. 11, p. 617, 1965.

This presentation does not contain any proprietary or confidential information

Boil-Off Loss

> Heat of conversion from normal to para is higher than the heat of liquefaction

Spontaneous conversion in the storage tank can cause vaporization

Calculated values from: Gursu, S. et al. An Optimization Study of Liquid Hydrogen Boil-Off Losses, Int. J. Hydrogen Energy., v. 17, p. 227, 1992.

This presentation does not contain any proprietary or confidential information

Future Work – Task 1

> Process Optimization, Design, and Economics

- Develop alternative liquefaction processes
 - 2009 Critical Milestone
- Incorporate improved ortho-para conversion process
- Estimate capital cost
 - 2010 Critical Milestone
- Establish component performance targets
 - 2010 Critical Milestone
- Develop process simulations for new designs
- Validate potential cost reduction
 - 2011 Critical Milestone

Future Work – Task 2

> Process Equipment Evaluation

- Evaluate commercially available critical equipment
 - Use this to develop new liquefaction processes
- Evaluate novel turbomachinery
 - Use this to develop new liquefaction processes
- Estimate capital cost
 - 2010 Critical Milestone
- Update critical equipment evaluation

Equipment development is beyond the scope of this program

Future Work – Task 3

> Ortho-Para Conversion Process Optimization

- Validate improved ortho-para performance
 2009 Critical Milestone
- Select best candidate ortho-para process
- Demonstrate process performance
 - 2011 Critical Milestone

Hydrogen Liquefier Equipment Design Considerations

Component	State of the Art	Near Term	Long Term
Compressors	Reciprocating Screw	Reciprocating Centrifugal	Centrifugal Hydride Shockwave
Pre-Cooling	Liquid N ₂	Mixed gas	Magnetic
Low-Temp Refrigeration	Reverse Brayton	Reverse Brayton with advanced turbines	Magnetic Acoustic
Heat Exchangers	Brazed aluminum	Brazed aluminum Micro-channel	Micro-channel
Ortho-Para Conversion	Catalytic conversion	Improved ortho-para process	Advanced ortho-para process

This presentation does not contain any proprietary or confidential information

Summary

- Multi-faceted approach to improving hydrogen liquefaction by improving process efficiency and reducing capital cost
- Goal is to define a new liquefaction process that integrates state-of-the-art equipment and takes full advantage of its increased capability
- Incorporate improved ortho-para conversion process already under development