

Development of a Novel Efficient Solid-Oxide Hybrid for Co-generation of Hydrogen and Electricity Using Nearby Resources for Local Application

Greg Tao, Mike Homel, Bruce Butler, and Anil Virkar Materials & Systems Research Inc., Salt Lake City, UT

2008 DOE Hydrogen Program Annual Review June 11, 2008

Project ID#: PDP 33

Overview

Timeline

- Project started: 02/10/2006
- Project ends: 07/31/2009
- Percent completed: 70%

Budget

- Total budget funding
 - DOE \$2,480k
 - Contractor \$ 620k
- Funding received in FY07
 \$ 1,265k
- Funding for FY08
 - \$ 755k

Barriers

Hydrogen generation by water electrolysis

- G Capital cost
 - Low-cost, durable high-temperature materials development
 - Lower operating temperature
- H System Efficiency
- K Electricity costs

Partners

- University of Alaska Fairbanks anode supports fracture mechanisms and modeling of residual stresses (S. Bandopadhyay; N. Thangamani)
- University of Missouri-Rolla cathode & seal materials development (H. Anderson; R. Brow)
- University of Utah interconnect development (A. Virkar)

Objective

Overall Objective	• To develop a low-cost and highly efficient 5 kW SOFC-SOFEC hybrid system co-generating both electricity and hydrogen to achieve the cost target of < \$3.00/gge when modeled with a 1500 gge/day hydrogen production rate.
	• The project focuses on materials R&D, stack design & fabrication, and system design & verification.
2007	 5 kW SOFC-SOFEC hybrid system development
	 Materials development and application (electrodes & seals)
	 Stack design and development
	 Hybrid system design
	 BOP components design and development
2008	• 5 kW SOFC-SOFEC hybrid system fabrication and assembly
	 Cell & non-cell repeat units fabrication
	 BOP components fabrication
	 Stack assembly and integration
	 Hybrid module evaluation
	 Control system assembly & programming

Materials and Systems Research, Inc.

MS

Milestones

Quarters, FY	Milestone or Go/No-Go Decision
1 st Quarter, FY07	Go/No-Go decision: assess the appropriate load and strains that SOFC-SOFEC can withstand.
2 nd Quarter, FY07	Go/No-Go decision: assess the viability of 1 kW hybrid module for cogeneration based on performance.
4 th Quarter, FY07	Go/No-Go decision: finalize the cathode system for hybrid application.
4 th Quarter, FY07	Milestone: Complete the design of the 5 kW system and major BOP components. Down select two "invert" glass compositions from 81 compositions that are thermal-mechanically compatible and thermal-chemically stable. Finalize the cathode system for SOFEC applications.
3 rd Quarter, FY08	Milestone: Complete the high temperature flexural tests and creep studies of SOFEC anode substrates.
4 th Quarter, FY08	Milestone: Complete fabrication of all cell/non-cell repeat units. Complete fabrication and pre-test of BOP components. Transfer the glass seal technology from the subcontractor to MSRI.

Approach

<u>Experimental</u> **Materials** Cell / Stack **Verification Development** /System Design A. Short stacks in dif. modes A. Cathode materials Dev. A. Stack design Success B. Anode optimization B. 5kW system design B. 1 kW hybrid stack C. Electrolyte optimization C. BOP design/dev. C. Durability evaluation D. BOP design & evaluation D. Catalyst studies D. Stresses analyses E. Seals development E. Seals application E. 5 kW hybrid system development & evaluation F. Fabrication Q.A. F. Economic analysis 80% complete 80% complete 50% complete He gas (2psig) 1-2 kW Stack (100 cm²/cell) **Biaxial Fixture MSRI, UMR** MSRI, UAF, UMR, UU MSRI, UU, UMR

Background

A Solid Oxide Fuel-Assisted Electrolysis Cell (SOFEC) directly applies the energy of a chemical fuel to replace the external electrical energy required to produce hydrogen from water/steam; decreasing the cost of energy relative to a traditional electrolysis process.

Concept of Hybrid SOFC-SOFEC Integral System

Technical Challenges and Solutions

- Pure H₂ & electricity co-production from feedstock: hydrocarbon fuel, steam, and air
- Hybrid comprised of SOFCs and SOFECs
- SOFECs produce pure H_2 and SOFCs generate electricity for a high H_2 production rate
- Thermal integration improves system efficiency

SOFEC Cathode Materials Development

LSCM Redox Stability Study

- Previous studies show that (La,Sr)(Cr,Mn)O₃based cathode material is electrocatalytically and chemically stable in both reducing and oxidizing atmospheres
- Previous long-term tests show degradation rate < 1% per 1000hrs over a 4500 hrs continuous test in the SOFC mode.
- Redox stability is desired for reversible applications

SOFC-SOFEC Anode Substrate Development

Reduction of Half-cells

- Porosity
- Triple phase boundary (TPB)

- Density
- Mechanical properties

Effect of Reduction on Phases & Microstructure

Effect of Reduction on Mechanical Properties

Half-cells that have NiO:

Higher initial E and a peak in E at 300°C due to rhombohedral to cubic transition ٠

<u>Half-cells that have no or negligible NiO:</u>

- No structural transition assisted change in E; Oxidation of Ni increases E ٠
- Scattering of E at high temperatures due to thermodynamic instability of c-ZrO₂ Materials and Systems Research, Inc. 12

Events Affecting 'E' at Elevated Temperatures

- Rhombohedral to cubic transition of NiO that affects the thermal expansion and Young's modulus @ $\sim 300^{\circ}$ C
- Oxidation of Ni $@ \sim 500^{\circ}C$

Hermetic Seals Development

<u>"Invert" silicate:</u> <u>Glasses with</u> SiO₂<45 mole%

<u>Compositions based on:</u> <u>Pyrosilicate</u> <u>and</u> <u>Orthosilicate</u>

Electrical Conductivity in Air and Forming Gas

Thermal Cycle Effects on Seals

Hermetic Seals After Initial Multiple Thermal Cycles

Sealing materials	Test conditions	Notes
430SS/G50 ¹ (45µm)/Ni- YSZ	wet forming gas	Failed after 20 cycles; Ni-YSZ fracture
430SS/G50 ¹ (45µm)/YSZ	air	Failed after 60 cycles; YSZ fracture
430SS/G81 ² (20µm)/Ni- YSZ	forming gas	10 cycles; Ni-YSZ fracture
430SS/G81 ² (20µm)/Ni- YSZ	forming gas	Failed after 30 cycles; Ni-YSZ fracture
430SS/G81 ² (25µm)/Ni- YSZ	forming gas	32 cycles without failure

(Samples held at pressure for 24 hours at 800°C; tested for leaks using a 4 psig differential in the testing gas)

¹ Glass prepared by a commercial vendor (MO-Sci)

² Glass prepared at UMR

Hermeticity and Materials Compatibility

Little Evidence for Significant Reactions @ Seal Interfaces

Cathode Characteristics in SOFC/SOEC/SOFEC Modes

SOFEC Stability Test

Single-cell Stack with 100 cm² Per-cell Active Areas

SOFC-SOFEC Hybrid Power & H₂ Cogeneration

Co-Production rate: Net power output @ 130 Watts and 270 standard liters of H₂ per hour (or 0.534 kg/day)

SOFC (13-cell) + SOFEC (20-cell) Hybrid Stack for a Continuous H₂ Production Temperature @ 780°C, AN: Syngas; CA1: air; CA2: H₂O; U_f/U_{air}/U_{steam}=50/60/40 --> 50/50/40

Materials and Systems Research, Inc.

Next Generation Stack Design for the 5 kW System

- Larger stacks (60+ cells per stack)
- Thermal and flow management
 - Novel flow geometry for in-stack temperature and flow optimization
- Improved sealing
- Design for assembly
 - Stack components have been minimized to reduce stacking time and error
 - ➤ Improved reliability
- Reduced pressure drop over previous designs

Balance of Plant Hardware

- Combustors, reformers and steam generators are being fabricated and tested prior to system integration.
- Catalytic combustors ensure minimal noxious byproducts.

Control System

- Design of electronic control algorithm for the SOFC-SOFEC hybrid system.
- Autonomous operation enables to perform all stacks at maximum fuel efficiency and producing hydrogen from excess capacity.
- Multiple stacks in parallel operation to increase reliability and disrupt failure cascades.
- Acquisition of electronic control hardware and integration with system software.
- Pre-test of power electronics and load leveling systems before being integrated into the overall system.

Future Work (FY 08 – FY 09)

<u>FY 08</u>

- Materials Development
 - > Exploring an advanced cathode material
 - Continuous investigation of anode substrates: equi-biaxial test and flexural strength under both air and H₂ at working temperatures; effect of thermal cycles on strength
- 5 kW Hybrid System Fabrication
 - ➢ BOP components fabrication
 - ➢ Stack assembly, integration and burn-in
 - Implementation and optimization of system controls

<u>FY 09</u>

- 5 kW Hybrid System Assembly and Evaluation
 - ➤ 5 kW hybrid system assembly
 - ➢ System testing and evaluation
 - Hydrogen production cost analysis using H2A model

Project Summary

Relevance:	Investigate an alternative approach to provide low-cost and highly efficient distributed electricity and hydrogen
Approach:	Develop a 5 kW SOFC-SOFEC hybrid system based on innovative materials development and system design research to co-generate hydrogen and electricity
Technologies Accomplishments and Progresses:	<u>Materials development</u> : - Evaluated redox stability and long-term stability of the promising cathode material for SOFEC applications Finalized two promising "invert" glass compositions from 81 candidates. Seals survived after 30+ thermal cycles in reducing/oxidizing atmospheres Investigated effects of reduction on microstructure development and phase formation, elastic properties as a function of temperature, and effects of porosity, composition & microstructure on strength. <u>5 kW hybrid system development</u> : - Evaluated long-term stability tests of hydrogen production to reduce cost. – Finalized the design of hybrid modules with improved thermal management and flow optimization. – Designed and fabricated major BOP components. – Designed hybrid system control algorithm and acquired control hardware.
Proposed Future Research:	Continue implementing mechanical/thermal analyses of anode supports; fabricate and evaluate BOP components and optimize hybrid system controls; implement 5 kW system experimental evaluation and perform cost analyses using DOE H2A model.

