

High-Capacity, High Pressure Electrolysis System with Renewable Power Sources

Transportation

Project # PDP06

Avälence Hydrofiller Electrolyzer

Martin Shimko, Avalence LLC, DOE Merit Review, June 11 2008

This presentation does not contain any proprietary, confidential, or otherwise restricted information

ELECTROLYZER DEVELOPMENT PROGRAM

Timeline

Start Date: May 2008 End Date: Nov 2010 Percent Complete: 2%

Barriers Addressed

Capital Cost System Efficiency Renewable Power Integration

Budget

Project Funding: \$2.41M DOE:\$1.93M Contractor: \$0.48M FY 07 Funding: \$0 FY 08 Funding: \$650K

Partners

Avalence:LeadHyperComp:Composite WrappingMIT:Fluid Flow DesignHydrogen Energy Center:Installation FundingMaineOxy:Revenue Operation

ELECTROLYZER DEVELOPMENT PROGRAM

US DOE R&D Grant - Research and Development for Hydrogen Production and Delivery Technology

Program Topic - Hydrogen Production from Electrolysis

Funding - \$2.4 M with 20% Cost Share \$930K Planned for FY 2008/2009

Schedule – 2 ¹/₂ (3) Years Starting May 2008

ELECTROLYZER DEVELOPMENT PROJECT PARTNERS

Avalence, Milford, CT Design, Fabrication, and Testing MIT, Cambridge, MA **Two Phase Fluid Design** HyperComp, Brigham City, UT **Cell Carbon Fiber Wrapping** Hydrogen Energy Center, Portland, ME Siting and Installation Funding MaineOxy, Auburn, ME **Revenue Operation**

ELECTROLYZER DEVELOPMENT PROJECT GOALS

- Achieving at Least a 15 X Increase in the Gas Production Rate of a Single High Pressure Production Cell
- Demonstrate the High Pressure Cell Composite Wrap Which Enables Significant Weight Reduction
- Build and Test a 1/10th Scale Pilot Plant
- Perform Economic Assessment for Full Scale Plant (300 kg/day, 750 kW) That Meets DOE 2017 Cost Target of \$3.00/gge

ELECTROLYZER DEVELOPMENT PROJECT MILESTONES

Original Project Milestones					
Milestone Description	Original Proposed Completed End of				
Preliminary Test Cell Fabricated	Month 5				
Preliminary Test Cell Testing Complete (1000 psi)	Month 7				
Cell Internal Design Frozen	Month 8				
Carbon Wrapped Cell Delivered	Month 9				
Single Cell Testing Complete (6,500 psi)	Month 12				
Efficiency, Manufacturability, and Economics Updated	Month 12				
Go/No Go Review (Technology and Economics)	Month 12				
Pilot Plant Design Complete	Month 16				
Pilot Plant Fabrication Complete	Month 22				
Pilot Plant Shakedown Testing Complete	Month 24				
Pilot Plant Performance Testing Complete	Month 27				
NREL Performance Testing Complete	Month 30				

ELECTROLYZER DEVELOPMENT DOE Barriers Addressed

- Capital Cost Increasing the Production Capacity for a Single Module Will Take Advantage of Economies of Scale
- System Efficiency Demonstrate that the Direct High Pressure Electrolysis Maintains the High System Efficiency Demonstrated in the Smaller Scale Systems
- Renewable Power Integration The Pilot Plant System will Be Compatible with Wind Power Input (and PV inherently) for Performance Testing at NREL

ELECTROLYZER DEVELOPMENT PROGRAM

Project Technical Objectives

Determine a Manifolding and Sealing Arrangement for Nested Cell that Satisfies Need for H₂ and O₂ Gas Separation, Electrical Connection to Electrodes, and Electrolyte Replenishment

Determine Containment Penetration Size and Design that is Compatible with Composite Wrapped Vessel Constraints, Cell Electrode Current Transfer and Flow Requirements For Gas Off-Take and Electrolyte Replenishment

Design a Functional Shape of Outer Metal Jacket For Dual Purpose:

1) Outer Electrode's Inner Surface

2) Vessel Liner that is the Foundation for Composite Wrap

Demonstrate the Performance of the High Output Cell Core so that Accurate Projections of Energy Use can Be Integrated into the Cost Model

Demonstrate the Ability to Implement a Composite Fiber Outer Wrap Over the High Output Cell Core

Produce a Pilot Plant Design For Use as a Basis for a Sound Economic Analysis of Plant Fabrication and Operating Cost

Demonstrate the Operation and Efficiency of the Pilot Plant

- 1) Laboratory Testing at Avalence
- 2) Field Testing at NREL

Have a Site Ready to Accept the Completed Plant for Commercial Operation

- 1) 100 kW of Renewable Power in Place
- 2) Sale or Use of the Plant Products Defined

ELECTROLYZER DEVELOPMENT PROGRAM SCHEDULE

<u>First Year – Tasks 1, 2, 3</u> Stretched to 17 Months Based on Anticipated Funding Availability

<u>Remaining Tasks 4 – 8</u> 18 Month Schedule Dependant on Funding Availability

PROJECT TIME LINE			Calendar Year Quarter									
	Q2 08	Q3 08	Q4 08	Q1 09	Q2 09	Q3 09	Q4 09	Q1 10	Q2 10	Q3 10	Q4 10	Q4 09
Preliminary Design												
Preliminary Nested Cell Demonstration (1,000 psi)												
Wrapped Cell Demonstration (6,500 psi)												
Go/No Go Decision Gate						Δ						
Final Cell Design												
Pilot Plant Design (30 kg/day)												
Pilot Plant Fabrication												
Pilot Plant Laboratory Testing												
Pilot Plant Testing at NREL												

Design Approach For High-Capacity, High-Pressure Production Cell

- Maintain Cylindrical Pressure Boundary Configuration
- Increase the Diameter By Using a Composite Outer Wrap
- Place Multiple Electrode and Membrane Pairings Inside a Single Cell Body
- Electrodes Act as Two Sided Unipolar Electrodes

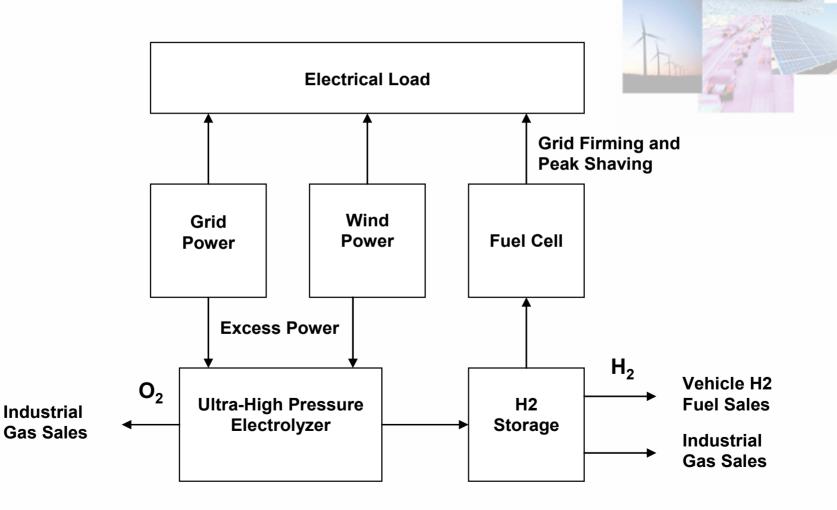
Project Design Challenges

- Gas Exit Manifolding
- Membrane to Manifold Sealing
- Fluid and Power Penetrations
- Composite Wrapping "Heavy" Cylinder
- Process Control of a Multiple, High-Capacity Cell Array

Pilot Plant Design

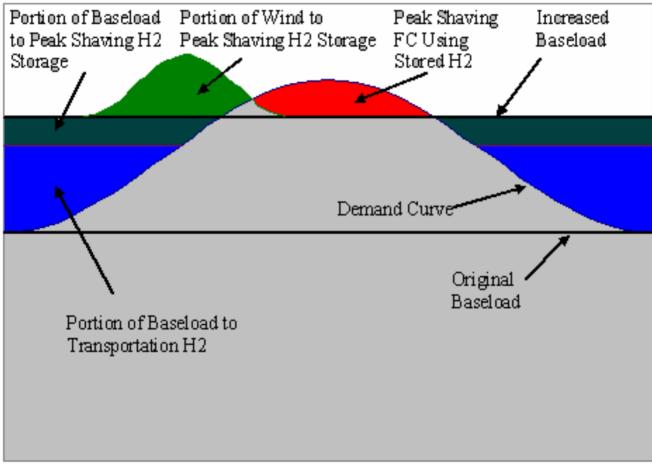
- >20 Cell Array
- ≻6500 psi Capable

- >At Least 30 kg/day Production
- Compatible With Variable Voltage Wind and Solar (PV) Power
- Capable of "Harvesting" Both H2 and O2
- Fully Automated Process Control


Energy Storage Utilizing Hydrogen

Unique Flexibility to Optimize System

- Allows Independent Sizing of Components to Optimize System Performance and Economics
 - Fuel Cell Sets Power Output from Stored H2
 - Storage Supply H2 for Required Period of Power
 - Electrolyzer Fill H2 Storage in Required Period or Absorb Set Fraction of Available Power
- Both Peak Shaving and Off-Peak Utilization for Baseload Stabilization (Grid Firming)
- Allows H2 Production and Sale for Transportation Fuel
 Maximize the Value of the Power Supplied



The Fully Integrated System Block Diagram

Example of Fully Integrated Wind, Base Load Power And Electrolyzer Hydrogen For Peak Shaving, Baseload Firming, And Transportation Fuel Production

Hydrofiller 5000 to Produce Green Hydrogen For Transportation Fuel Sales Hydrofiller 5000 Using Wind Power Is Superior To Retail Gasoline At \$3/Gal

*300 Kg/Day 750 kW Rating *2012 Commercial Price Target: \$650K

*Assume 35% Availability for Wind Power Yields 38,000 kg/yr

"Green" Hydrogen Costs:

 20 Yr. Depreciation 	:\$0.85/Kg
3%/Yr. O&M and Overhaul Average	: 0.51
Wind Power Cost (\$.035/kWh & 54 kWh/kg)	: 1.89
Transport To User Site	: 0.50
 Markup 	: 1.00
Green H2 Retail Price	:\$4.75/Kg

"Green" FC Vehicle @55 Mi/kg (@\$4.75/kg) = 8¢/Mi Polluting Gas Vehicle @30 Mi/Gal (@\$3/Gal In US) = 10¢/Mi

Simple Economic Assessment of Large Wind Energy Storage Fully Commercial CapEx and Cost Assumptions

- Electrolyzer: \$480/kW (Meeting DOE Target)
- Fuel Cell: \$200/kW
- H2 Storage:\$200/kg
- > Annual O&M, Refurbishment Reserve:
 - *****3% of System CapEx for H2 System
 - *1% of System CapEx for Wind System
- Wind Power Installed Cost: \$1.50/W
- > Average PPA for Raw Wind: 3.5¢/kWh
- > Average Value of "Peak" Power is 15¢/kWh

Detailed Economics: Baseload Firming 1/3 of the Available Power Converted to H2 1 Full Day Fuel Cell Power Stored

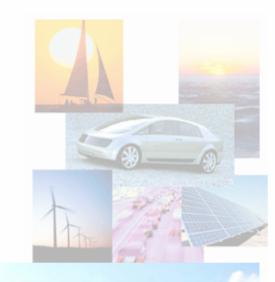
100 MW Installed Wind, 33 MW Electrolyzer, 22,500 kg Storage, 25 MW Fuel Cell	Without H2 System	With H2 System
Annual Electrolyzer, Storage, Fuel Cell System Cost (20 Year Amortization)	-	\$1.3 MM
Annual Wind Turbine Installation Cost (20 Year Amortization)	\$7.5 MM	\$7.5 MM
Annual Operating, Maintenance, Refurbishment	\$1.5 MM	\$2.0 MM
Annual "Junk" Power Yield (35% Capacity Factor)	307 GWh	205 GWh
Annual On-Demand Power Yield (50% Efficiency)	-	51 GWh
Annual Value of "Junk" Power @ 3.5¢/kWh	\$10.7 MM	\$7.2 MM
Annual Value of "Peak" Power @ 15¢/kWh		\$7.6 MM
Annual Profit	\$1.7 MM	\$4.0 MM

Contact Information

<u>CEO</u>:

Stephen Nagy

Operations and Fundraising


sfn@avalence.com

President:

Martin Shimko

Technology Development, Sales, and IP Protection

mas@avalence.com

1240 Oronoque Road • Milford, Connecticut 06460 • Tel: 203-701-0052 • Fax: 203-878-4123 www.avalence.com -19-