Development of a Centrifugal Hydrogen Pipeline Gas Compressor

Colin Osborne/Francis A. DiBella Concepts NREC June 11, 2008

Project ID: PDP9

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Time Line

Start date: June 2008 End date: May 2011 Percent Complete: Just started

Barriers

Reliability - High

Hydrogen Energy Efficiency - > 98%

Capital Cost - < \$9 million/200,000 kg/day

Maintenance - < 3%/year of total capital investment

Hydrogen Purity – Zero contamination

Budget

Total project funding - \$3.75 million DOE funding - \$ 3.0 million

Contractor - \$ 0.75 million

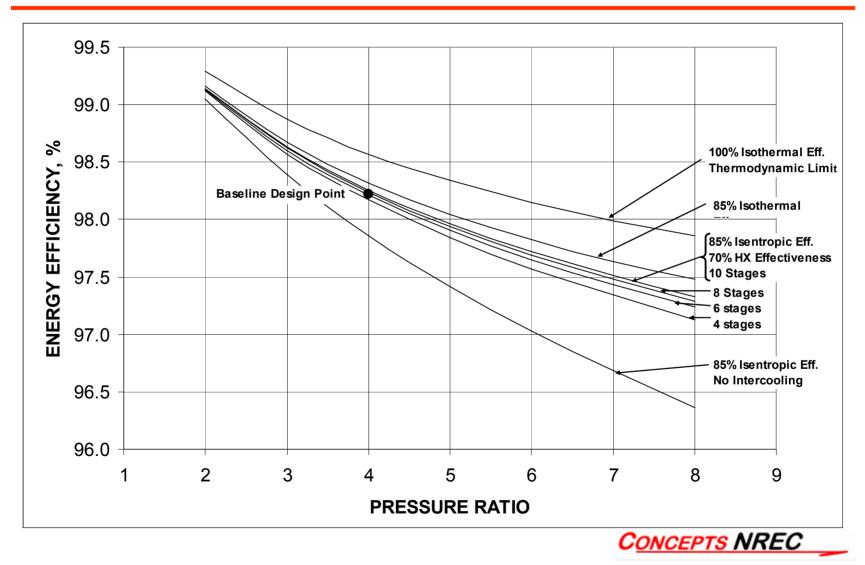
Funding received to date – Project not started

Partners

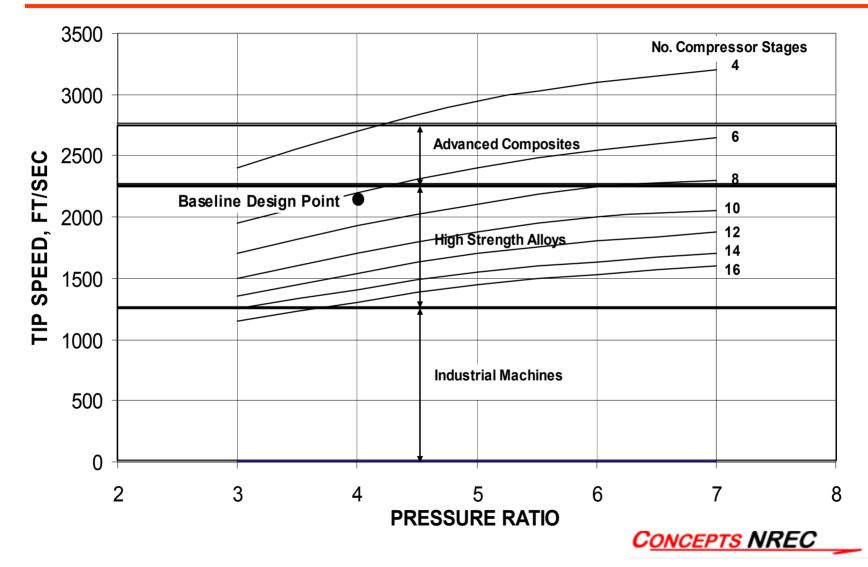
Praxair, Inc

HyGen Industries

Texas A&M University



Objective

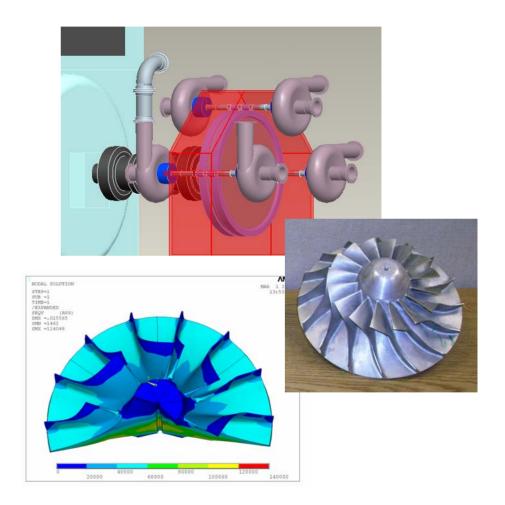

- Design and Demonstrate Advanced Centrifugal Compressor for High-Pressure Hydrogen Pipeline Transport
 - Investigate alternative system sizes, design options, operating conditions and costs
 - Select baseline design able to meet near-term applications
 - Identify critical areas of development and operational limitations
 - Design and test critical components under design conditions
 - Build and demonstrate full-scale components in an integrated compressor system
- Prepare Development Plan for Industrial Pipeline Application

Compressor Hydrogen Efficiency at Alternative Design and Operating Conditions

Generalized Design Limitations for Hydrogen Compression

Milestones

- August 2009 Go/No-Go Decision Alternative system designs reviewed and selection made of preferred approach. Materials and components testing will be completed and a material selected for compressor rotor.
- May 2010 Go/No-Go Decision Detailed design and cost analysis of full-scale pipeline system completed. Design of Laboratory Validation System finalized.
- June 2011 Go/No-Go Decision Fabrication and testing of two-stage Laboratory Validation System completed. Revised design and updated manufacturing cost analysis completed.


Approach

Initial Design	> Detailed Design	System Validation
 Initial design criteria and performance specifications. Initial integrated systems design and cost analysis. Aerodynamic and structural analysis of compressor. Materials and/or coatings investigated for use in high- pressure hydrogen environment. Final design specifications. 	 Detailed integrated systems analysis. Critical components design and testing. Detailed design of full- scale and laboratory validation systems. Detailed cost analysis of full-scale system. 	 Two-stage centrifugal compressor system fabricated and tested to validate design. Final design of full-scale system completed. Field demonstration program plan prepared.

Program Accomplishments to Date

- Final contract negotiations in progress.
- Initial design approaches have been defined and a baseline concept has been established.

Future Work

- Complete contract negotiations.
- Prepare initial systems analysis to determine components/subsystems design specifications.
- Design compressor for high pressure ratio operation in hydrogen.
- Investigate and select materials for impeller design in a high-pressure hydrogen environment.

Summary

- Development program for efficient hydrogen pipeline compressor underway.
- Subcontractor team in place.
- Initial activities will focus on materials selection and compressor design.
 - Advanced aerodynamic and structural designs to minimize impeller stresses.
- Initial design specifications targeting current pipeline compressor requirements.
 - Provides for early introduction into the developing hydrogen pipeline infrastructure.

