

Materials Compatibility

Brian Somerday Sandia National Laboratories June 12, 2008

Project ID # SCS2

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000

Overview

Timeline

- Project start date Oct. 2003
- Project end date Sept. 2015
- Percent complete 42%

Budget

- Total project funding (to date)
 - DOE share: \$2.9M
- FY07 Funding: \$0.9M
- FY08 Funding: \$1.1M (* R&D core, no IEA contracts)

Barriers & Targets

- Barriers and targets addressed
 - Materials reference guide for design and installation
 - Hydrogen storage tank standards for portable, stationary and vehicular use
 - Insufficient technical data to revise standards

Partners

- Collaborators:
 - ASME, CSA
 - Swagelok, Fibatech
 - NIST
 - DOE Pipeline Working Group

Objectives

- Enable development and implementation of codes and standards for H₂ containment components
 - Evaluate data on mechanical properties of materials in H₂ gas
 - "Technical Reference on Hydrogen Compatibility of Materials"
 - Generate new benchmark data on high-priority materials
 - Pressure vessel steels, stainless steels
 - Establish procedures for reliable materials testing
- Participate directly in standards development
 - Component design standards
 - ASME Article KD-10
 - Materials testing standards
 - Automotive components

Milestones

- Complete Technical Reference chapters on polymers and martensitic stainless steels (FY07 Q4 and FY08 Q2; complete)
- Complete crack growth threshold measurements of SA 372 Gr. J, DOT 3T, and DOT 3AAX pressure vessel steels (FY07 Q4; complete)
- Complete acquisition and installation of capability for measuring fatigue crack growth in high-pressure H₂ (FY07 Q3; in progress, expected FY08 Q3)
- Fatigue crack growth testing of 316 stainless steel in collaboration with industrial partner (FY08 Q2; in progress, expected FY08 Q4)

Approach

- Applied research
 - Measure fracture resistance of materials emphasizing:
 - Exposure to high hydrogen gas pressures (>100 MPa)
 - Fracture mechanics methods
 - Material fabrication and service variables (e.g., welds, temperature)
 - Critically review data to assess test methods
 - Ensure measurements reflect lower-bound fracture properties
 - Evaluate how data enable structural design
- Standards development activities
 - Provide feedback on ASME Article KD-10 based on results from materials testing
 - Develop ideas for materials testing standards applied to automotive components

Technical Reference on Hydrogen Compatibility of Materials

- Created Sandia report consisting of first 14 chapters
 - Available on web site (<u>www.ca.sandia.gov/matlsTechRef</u>)
- New chapters in FY07-FY08
 - Martensitic stainless steels (e.g., 400 series)
 - Precipitation-hardening martensitic stainless steels (e.g., 17-4 PH)
 - Semi-austenitic stainless steels (e.g., 17-7 PH)
 - Polymers
- Future chapters
 - 310 and 321 stainless steels
 - Precipitation-hardening aluminum
 - Nickel alloys

Technical Reference report distributed to industrial gas, automotive, SDO stakeholders

Measurement of sustained-load cracking thresholds in steels

wedge opening load (WOL) cracking threshold specimen

strain gage leads (Excitation and DAQ)

- Specimen loaded to $K_o > K_{TH}$ using bolt while contained in glove box
- Loaded specimen exposed to H₂, crack extends after incubation time
- Generate benchmark data for SA 372 Gr. J, DOT 3AAX, DOT3T

Measurement of thresholds (K_{TH}) for Cr-Mo steels completed

 K_{TH} values serve as benchmark data for implementing design standards such as ASME Article KD-10

Data trends indicate procedures require further examination

Must demonstrate that procedures allow measurement of lower-bound properties

New specimen designed to validate K_{TH} measurements

Results from testing modified specimen will provide feedback on procedures in ASME Article KD-10

Evaluation of fabrication and service variables for 316 SS

316 stainless steels with ~140 wppm hydrogen

Benchmark data motivated by needs of stakeholders (e.g., ASME, industrial gas, automotive)

Design of system for fatigue crack growth tests in high-pressure H₂

vessel on mechanical test frame

- Pressure vessel designed to contain
 H₂ gas up to 20 kpsi (138 MPa)
 - Only two other known similar systems: Japan and UK
- Challenges in testing and system design
 - Leak rates at dynamic seals
 - Accurate load measurement
 - Effect of high-pressure H₂ gas on instrumentation
- Materials data serve as inputs for design method in ASME Article KD-10

Future Work

Remainder of FY08

- Compose Technical Reference chapters on 310 and 321 stainless steels
- Measure cracking thresholds of Ni-Cr-Mo pressure vessel steel in 100 MPa H₂ gas
- Measure fatigue crack growth rates of 316 stainless steels containing thermally precharged hydrogen
- Measure fatigue crack growth rates of Cr-Mo and Ni-Cr-Mo pressure vessel steels in 100 MPa $\rm H_2$ gas

FY09

- Compose Technical Reference chapters on precipitation-hardening aluminum and nickel alloys
- Emphasize fatigue crack growth rate testing
- Include aluminum alloys in materials testing

Summary

- Completed measurements of cracking thresholds for SA 372 Gr. J, DOT 3T, and DOT 3AAX steels in high-pressure H_2
 - K_{TH} values serve as benchmark data for implementing design standards such as ASME Article KD-10
- Unexpected dependence of K_{TH} on initial stress level (i.e., K_o) prompted review of testing procedures
 - Must demonstrate that testing procedures allow measurement of lower-bound properties
 - Designed modified specimen to validate measurements
- Evaluated effects of fabrication and service variables on hydrogen-assisted fracture in 316 stainless steel
 - Benchmark data for welds motivated by needs of stakeholders

