

HYDROGEN STORAGE IN METAL-ORGANIC FRAMEWORKS

Omar M. Yaghi

Department of Chemistry Center for Reticular Chemistry UCLA

June 10, 2008

Project ID ST12

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

Project start date: 5/1/2005 Project end date: 4/30/2009 Percent complete: 70%

Budget

Total project funding

- DOE share: \$1.6 M
- □ Funding received in FY07: \$375 K
- □ Funding for FY08: \$400 K

Barriers

Barriers addressed

- Improved gravimetric and volumetric density of hydrogen uptake
- Hydrogen capacity and fast kinetics at 77 K
- □ Improved hydrogen binding energy
- Synthesic scale up of MOFs to cubic meters

Collaborating Partners

- □ Juergen Eckert (UCSB)
- □ Joe Hupp (NW)
- Randy Snurr (NW)
- Bill Goddard (Caltech)

Objectives (2007-08)

1. Relationship between MOF structure and binding energy
 Low-pressure measurements at various temperatures

2. High-pressure H₂ adsorption measurement at RT
 Impregnation of polymer and metal complex
 Preparation of Li-doped MOFs

3. Toward the practical use of MOFs

- Cycling and kinetics of H₂ charge/discharge
- Effect of impurity in H₂ gas
- Consideration of heat management

4. Coordination with theory

Prediction of H₂ uptake capacity

Milestones

June 2007	Impregnation with polymers and metal complexes
	Test interpenetrating MOFs with open metal sites

November 2007 Study of relationship between MOF structure and binding energy Begin Li-impregnation in MOFs

March 2008 Study effect of impurity in H₂ gas

August 2008Li-impregnation by gas-phase adsorptionDesign and synthesis of novel MOFs for Li-doping

December 2008 H₂ adsorption in Li-doped MOFs at room temperature (3-4 wt% at 298 K and 100 bar)

Important Aspects of MOF Chemistry

- Design of composition (metal centers and organic links). Synthesis and structural characterization is well worked out.
- Control of structure, topology, interpenetration and porosity.
- Formulation of hypothesis and testing of hypothesis is quite feasible. This leads to definitive conclusions and allows for rapid identification of important parameters which impact hydrogen uptake.

H₂ uptakes in representative MOFs

Using strategies to meet 2010 DOE targets

Compound	Chemical	Attribute	Low-pressure (77 K, 1 bar)		High-pressure (77 K)		ΔH
	TOrmula		mg g ⁻¹	g L-1	mg g ⁻¹	g L-1	kJ mol-1
IRMOF-1	$Zn_4O(C_8H_4O_4)_3$	Non-functionalized	13.2	7.8	52.1	30.8	4.8
MOF-177	Zn ₄ O(C ₂₇ H ₁₅ O ₆) ₂	Non-functionalized	12.5	5.3	74.9	32.0	4.4
IRMOF-2	$Zn_4O(Br-C_8H_4O_4)_3$	Functionalized	12.1	7.9	-	-	-
IRMOF-3	Zn ₄ O(NH ₂ -C ₈ H ₄ O ₄) ₃	Functionalized	14.2	8.7	-	-	5.3
IRMOF-6	Zn ₄ O(C ₁₀ H ₈ O ₄) ₃	Functionalized	14.8	9.7	48.5	31.7	-
IRMOF-20	Zn ₄ O(C ₈ H ₂ O ₄ S ₂) ₃	Functionalized	13.5	6.9	66.7	34.1	-
IRMOF-11	Zn ₄ O(C ₁₈ H ₁₂ O ₄) ₃	Interpenetrating	16.2	12.3	35.2	26.7	9.1
IRMOF-13	Zn ₄ O(C ₁₈ H ₈ O ₄) ₃	Interpenetrating	17.3	13.0	-	-	-
MOF-199	Cu ₂ (C ₉ H ₃ O ₆) _{4/3}	Open metal site	25.4	22.3	32.6	28.7	6.8
MOF-505	Cu ₂ (C ₁₆ H ₆ O ₈)	Open metal site	24.7	22.9	42.0	38.9	6.5

MOF

Hydrogen Storage Capacities (50 bar, 77K)

Stored hydrogen per mass and per volume

(only metal hydrides showing good recycling are included)

Room temperature hydrogen storage and the challenges addressed

□ Stronger binding of hydrogen

- Combination of interpenetration with open metal sites
- Introduction of links containing B and N (as strong polarizing atoms)
- Impregnation of MOF-177 with polymers
- Impregnation of MOF-177 with transition metal complexes
- Doping with Li
- Kinetics of uptake and release, multiple cycles, and impact of impurities on uptake of hydrogen
- **Coordination with theory (close collaboration with Bill Goddard)**
 - Concepts and prediction from theory for covalent-organic frameworks (COFs)
- Preliminary structures with potential for soft chemisorption
 - ZIF-100
 - ZIF-333

Open metal sites fully characterized in MOFs

Cu₂(ATC)·6H₂O

Cu₂(ATC)

- H. Li and O. M. Yaghi, J. Am. Chem. Soc. 1998, 120, 2186.
- H. Li and O. M. Yaghi, J. Am. Chem. Soc. 1998, 120, 8571.
- B. Chen and O. M. Yaghi, J. Am. Chem. Soc. 2000, 122, 11559.

Combination of interpenetration with open metal sites

MOF structures combining interpenetration and open metal sites

Introduction of links containing B and N (as strong polarizing atoms)

MOF-324 and 326

MOF-324

Zn₃(OH)[(PyC)₂(HPyC))] *Pa*-3, *a* = 20.123 Å Pore diameter = 7.6 Å

MOF-5 type structure

MOF-326 Zn₄O(Et-PzDC)₃

Fm-3m a = 33.410 Å V = 37294 Å³

Et-PzDC

Stable compounds

- Strong B–N bonds (450 kJ/mol)
- Stable in aqueous, basic media
- Charged compound
 - B: negative charge
 - N: positive charge

H₂ isotherms for MOF-324 and 326

Impregnation of MOF-177 with polymers

Doping with lithium

Polymer impregnation in MOF-177

High room temperature H₂ uptake (5 wt%) in Li-doped Zn-MOF systems

Possibility of Lithium transfer by Li/hydrocarbon complexes

What's next?

Make an ion pair in MOF frameworks by metal impregnation (e.g. Li, K, Na, Cs)

- <u>Bond dissociation enthalpy</u> (experimental data)
 102 kJ mol⁻¹ for Li⁺(acetone)₃; 101 kJ mol⁻¹ for Li⁺(THF)₃
- Predicted adsorption enthalpy of H₂ in Li/MOFs: 17 kJ mol⁻¹

Gas-phase adsorption will be attempted rather than conventional liquid-phase adsorption to prepare Li-MOF complexes

Proof-of-concept

- Li-benzene and Li-dibenzene complexes were synthesized and their IR spectra were measured (*JACS* 1988).
- Simulated IR spectrum for Li-benzene complex based on the DFT calculation shows similar IR profile comparing to the experimental data. (Han and Goddard, Caltech)

Li-hydrocarbon complexes should be experimentally accessible.

JPC A 2000

JACS 2007

Summary of high-pressure hydrogen adsorption measurements at room temperature

Volumetric total uptake at 298 K

Better volumetric H₂ density compared to compressed H₂

Toward the practical use of MOFs

Cycling uptake and release

- Excellent durability
- Fast H₂ charge rate (< 3 min)</p>
- At least 4 wt% of H₂ should be deliverable

Impact of impurities

Contaminated water could be adsorbed in MOF-177

Heat management

 10⁴ kJ of heat can be released if 4 kg of H₂ is charged in aluminum cylinder with MOF (ΔT ~ 70 °C)

Progress in making materials suitable for soft chemisorption

Approach 1: Metal ions in π - π gaps in **interpenetrating structure**

- In several MOFs, two benzene rings face each other across a short distance.
- After metal impregnation, greater polarization is expected.

MOF-14

Approach 2: Post-synthesis modification of MOFs (e.g. potential halogen-lithium exchange)

a = 23.8130 Å, c = 31.0160 Å $V = 15231.6 \text{ Å}^3$

MOF-5 type topologyDoubly interpenetrated framework

If each Li in the link can capture $3 H_2$ molecules, 4-5 wt% of H_2 uptake at RT is expected.

Approach 3: Post-synthesis modification with metalcomplexes capable of soft-chemisorption

Proof-of-concept: Ferrocene-derivatives of IRMOF-3 successfully made

$\Delta H vs.$ Henry's constant

- In general, ΔH is proportional to $\log(K_{\rm H})$.
- Polarizing atoms enhance the adsorption enthalpy of H₂.
- If effect of entropy is small, greater K_H is expected.

• As long as maximum H₂ uptake is the same, smaller $K_{\rm H}$ but greater ΔH is preferable to increase deliverable H₂.

Approach 4: Use inorganic SBUs with transition metals Predicted to have higher adsorptive energy

Metal	Sc	Ti	V	Cr	Mn
E _b (kJ mol⁻¹)	21.9	34.6	46.5	10.4	8.4
d (Å)	2.35	2.07	1.93	2.32	2.42

Sun et al., JACS 2007

Reticular synthesis of novel materials combining all attributes deemed favorable to hydrogen storage

- Highly porous with little dead volume
- Smaller pore diameter (< 10 Å)
- Unsaturated metal surface
- Large density of strong binding sites

Preliminary structures with potential for soft chemisorption

The case of zeolitic imidazolate frameworks

Approach 5: Zeolitic imidazolate frameworks High density of proximal Lewis acid-base sites (case 1)

Zn atoms are capped by OH⁻, which were replaced by fluorine group

Approach 5: Proximal Boron and Nickel sites linked by imidazolate within ZIF-333 (case 2)

Predictions for covalent-organic frameworks

Gravimetric excess and total H₂ uptake of COFs at 77 K

COF-105 will have the highest uptake (excess 10% and total 20%)

Structure of COF-108 with **bor** blueprint d = 0.17 g/cm³, S.A. = 4,700 m²/g, *Science* **2007**

Goddard's calculations

Relevance: For room temperature hydrogen storage, a systematic survey was pursued experimentally as well as theoretically.

Approach: Aim at increasing strong binding sites for maximum hydrogen uptake capacity without losing pore volume.

Technical accomplishments and progress:

- Impregnation of MOF-177 with polymers and metal complexes
- Considered relationship between Q_{st} values and pore structures
- Began metal-doping experiments
- Demonstrated the stability and durability of MOF-177

Technology transfer/collaborations: Active relationship with collaboration partners and BASF. Beginning new collaboration with Goddard theory group.

Proposed future research:

- Employ light weight metals to create strong binding sites.
- Implement the concept of "soft chemisorption".
- Material design based on theoretical prediction.

Current Group Members

Dr. R. Banerjee

Dr. A. Côté

Dr. C. Doonan

Dr. H. El-Kaderi

Dr. H. Furukawa

Dr. Y. Go

Dr. H. Hayashi

Dr. S. Kim

Dr. Z. Lu

Dr. K. Park

Dr. D. Tranchemontagne

D. Britt

E. Choi

J. Hunt

G. Liu

W. Morris

A. Phan

F. Uribe-Romo

Additional Slides (For Supporting Information)

MOF-601: A MOF structure combining interpenetration and open metal sites

R-3*m a* = 43.9991 Å, *c* = 12.2585 Å V = 20552.1 Å³

Cu paddlewheel and CN group Interpenetrated **nbo** net

MOF-601 (high-pressure) hydrogen uptake is unexceptional

MOF-14: Another MOF combining interpenetration with open metal sites

MOF-14 (high-pressure)

At 77 K: 3.9 wt% (surface excess), 5.5 wt% (total uptake, 70 bar) RT: open metal sites and interpenetration is not enough

in-situ ligand generation

 $Zn_3(OH)[(PyC)_2(HPyC))]$ Pa-3, a = 20.123 ÅPore diameter = 7.6 Å MOF-5 type structure

Smaller pore diameter improve H₂ uptake in the low-pressure region

 H_2 uptake at RT and 100 bar seems to be lower than that at 87 K and 1 bar. Adsorbent-adsorbate interaction needs to be improved.

+ $Zn(NO_3)_2$

 $Zn_4O(Et-PzDC)_3$

Fm-3m a = 33.410 Å *V* = 37294 Å³

Et-PzDC

□ Stable compounds

- Strong B–N bonds (450kJ/mol)
- Stable in aqueous, basic media

Charged compound

- B: negative charge
- N: positive charge

H₂ isotherms for MOF-326

- MOF-5 type structure
- B-N bond
- Improvement of Q_{st} value

Gravimetric excess uptake at 298 K

- High surface area is necessary even at RT
- Gravimetric uptake is too low to meet the target

How to make ion pair?

- Metal should be positively charged
- Anion of hydrocarbon should also be formed
- Large fused aromatic cycle is preferable
- RT H₂ uptake can be proportional to Li density in MOFs
- Dianion or trianion is better for high performance

Oxidation potential

	<i>E⁰ vs.</i> SHE
Li+/Li	-3.05 V
Rb+/Rb	-2.98 V
K+/K	-2.93 V
Cs ⁺ /Cs	-2.92 V
Ca ²⁺ /Ca	-2.84 V
Na⁺/Na	-2.71 V
Mg ²⁺ /Mg	-2.36 V

Cycle performance for MOF-177 at 77 K

- Excellent durability
- Fast H₂ charge rate (< 3 min)</p>
- At least 4 wt% of H₂ should be deliverable

Effect of impurity in H₂ gas (High-P)

Contaminated water could be adsorbed in MOF-177

Cycle performance for HKUST at 77 K

Heat formation in MOFs

<u>Outstanding challenge</u>: Since the adsorption process is exothermic, heat is released when H_2 molecules are adsorbed in MOFs

Cylinder made of Al (25 kg)

If H₂ is charged in the cylinder instantaneously and $\Delta H = 5 \text{ kJ mol}^{-1}$ \downarrow Heat formation: 10000 kJ \downarrow $\Delta T \sim 70 \text{ °C*}$

* ΔH [kJ/mol] = C_v [J/K·mol] x ΔT [K], Specific heat capacity (C_v) for H₂, Al, and MOF-5 is 20.7, 24.2, and 10⁴ J/K·mol

To avoid significant temperature change, (1) the system can be constructed by assembly of small cylinders that contain heat releasing attachments, or (2) coolant needs to be provided at the fuel station.