

Effects and Mechanisms of Mechanical Activation on Hydrogen Sorption/Desorption of Nanoscale Lithium Nitrides

Leon L. Shaw, Tippawan Markmaitree, William Osborn, Xuefei Wan, Kyle Crosby University of Connecticut

> **Z. Gary Yang, Jianzhi Hu, Ja Hu Kwak** Pacific Northwest National Laboratory

June 9 – 13, 2008 2008 DOE Hydrogen Program Review

Project ID: ST14

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Timeline:

- Project start date: December 2004
- Project end date: December 2009
- Percent complete: 55%

Budget:

- Total project funding:
 - DOE share: \$1.6 mil
 - Contractor share: \$0.4 mil
 - Funding received in FY07: \$200,000 for UConn; \$90,000 for PNNL
- Funding for FY08: \$250,000 for UConn; \$80,000 for PNNL

Partners/Collaborators:

- Pacific Northwest National Laboratory NMR analysis
- Sandia National Laboratory Information exchange
- Universidad de Extremadura, Badajoz, Spain X-ray analysis
- HRL Laboratories Information exchange
- University of Pittsburgh Information exchange

Barriers

- A. System weight and volume: 2 kWh/kg & 1.5 kWh/LE. Charging/discharging rates:
 - 3 min for 5 kg

Objective in FY 07:

 \Box Identify hydriding/dehydriding reaction mechanisms and rate-limiting steps of (LiNH₂ + LiH) systems

Enhance hydriding/dehydriding rates via nano-engineering and mechanical activation

□ Improve hydriding/dehydriding properties via thermodynamic destabilization

Objective in FY 08:

□ Further improvement in hydriding/dehydriding properties of (LiNH₂ + LiH) systems via nano-engineering, mechanical activation, and thermodynamic destabilization

Establishment of the atomic level understanding of the reaction mechanism and kinetics of mechanically activated, nano-engineered (LiNH₂ + LiH) systems

□ Nano-engineering and mechanical activation of LiBH₄-based materials

□ Demonstration of hydrogen uptake and release of (LiBH₄ + MgH₂) systems with a storage capacity of ~ 10 wt% H₂ at 200^oC

Milestones

Month/Year	Milestone or Go/No-Go Decision
Nov-07	<u>Milestone:</u> Identify the hydriding/dehydriding mechanisms and rate- limiting steps of (LiNH ₂ + LiH) systems. Establish the effect of mechanical activation. Enhance the reaction kinetics of mechanically activated, nano-engineered (LiNH ₂ + LiH) systems.
Dec-07	<u>Go/No-Go Decision:</u> Demonstrate mechanically activated Li_3N -based materials with ~ 7.5 wt% reversible hydrogen storage capacity and uptake/release at temperatures below 130°C and a few bars of hydrogen pressure.
Nov-08	<u>Milestone:</u> Establish the atomic level understanding of the reaction mechanism and kinetics of hydriding/dehydriding of mechanically activated, nano-engineered (LiNH ₂ + LiH) systems. Demonstrate hydriding and dehydriding reactions of (LiBH ₄ + MgH ₂) systems at the solid state, i.e., below the melting point of LiBH ₄ (T _m = 280°C). Demonstrate hydrogen uptake and release of (LiBH ₄ + MgH ₂) systems with a storage capacity of ~ 10 wt% H ₂ at 200°C.
Dec-08	<u>Go/No-Go Decision:</u> Demonstrate hydrogen uptake and release of (LiBH ₄ + MgH ₂) systems with a storage capacity of ~ 10 wt% H ₂ at 200°C.

<u>Approaches</u>

> Identifying the mechanism and rate-controlling step of hydriding and dehydriding reactions of (LiNH₂ + LiH) systems and LiBH₄-based materials.

Developing the understanding of the effect of mechanical activation and nano-engineering on hydriding and dehydriding properties

> Applying the understanding of mechanical activation and the established reaction mechanism and rate-controlling step to enhancing hydriding and dehydriding properties and long-term cyclical stabilities of hydrogen storage materials.

Identification of Reaction Mechanism

 $LiNH_2 + LiH \iff Li_2NH + H_2$

Reversible storage capacity = 6.5 wt\% H_2 [1]

 ΔH (dehydriding) = 65.6 kJ/mol H₂ [2]

➤ The current operating temperatures for hydriding and dehydriding are typically at ~ 280°C, higher than the thermodynamic prediction [1-3].

> Why is hydriding very fast, whereas dehydriding is very slow [4]?

> Why is the formation of Li_2NH and NH_3 from $LiNH_2$ slow [5], whereas the reaction between NH_3 and LiH is very fast [6]?

> There is NH_3 emission associated with this storage system [3,7].

[1] P. Chen, et al., Nature, 420, 302 (2002).

- [2] Y. Kojima, Y. Kawai, J. Alloys Comp., 395, 236 (2005).
- [3] L. Shaw, et al., J. Alloys Compd., 448, 263 (2008).
- [4] L. Shaw, et al., J. Power Sources, 177, 500 (2008).
- [5] T. Markmaitree, R. Ren, L. Shaw, J. Phys. Chem. B., 110, 20710 (2006).
- [6] H. Y. Hu, E. Ruckenstein, J. Phys. Chem. A, 107, 9737 (2003).
- [7] T. Ichikawa, et al., J. Phys. Chem. B, 108, 7887 (2004).

Identification of Reaction Mechanism

Composition analysis of the effluent gas from LiNH₂+LiH mixtures during heating

Comparisons in the NH₃ emission from different hydride systems

\Box The LiNH₂–only sample exhibits the highest NH₃ emission.

□ LiNH₂+LiH mixtures display much less NH₃ emission, indicating the "capturing" of NH₃ by LiH and offering the evidence of two elementary steps for dehydrding reaction.

□ Ball milling reduces the NH_3 emission dramatically (by about 36 times); In fact, the NH_3 intensity is so low that it is below the detection limit of the mass spectrometer.

Identification of Reaction Mechanism

VT 300MHz in situ ¹H MAS NMR Spectra

□ NH₃ releases from LiNH₂ at temperatures as low as 30°C. The speed of NH₃ release increases dramatically at ~ 75°C.

\Box LiH reacts with NH₃ at RT; however, the minimum temperature for LiH to capture all the NH₃ molecules is higher than the temperature at which a large quantity of NH₃ is released from LiNH₂.

Isothermal hydrogen uptake/release cycles of the LiNH₂ + LiH mixture at 285^oC*

A rapid hydrogen uptake rate (i.e., approaching the theoretical storage capacity in ~ 5 min)

> A slow release rate (i.e., incomplete release of hydrogen in 2.5 h).

Modeling of the release kinetics under a constant temperature and constant hydrogen pressure to investigate the rate-limiting step.

* L. Shaw, W. Osborn, T. Markmaitree, X. Wan, J. Power Sources, 177, 500 (2008).

Dehydriding of LiNH₂ + LiH proceeds with two elementary reactions:

□ Both reactions produce solid products. However, Reaction (1) occurs very slow because of the diffusion-controlled reaction [1], whereas Reaction (2) takes place in microseconds [2] because of cracking and flaking off of the LiNH₂ product [3].

□ The cracking and flaking off of the $LiNH_2$ product is due to the fact that the volume of the solid product from Reaction (2) is substantially larger than that of the solid reactant (2 times larger) [3].

[1] T. Markmaitree, R. Ren, L. Shaw, J. Phys. Chem. B., 110, 20710 (2006).
[2] H. Y. Hu, E. Ruckenstein, J. Phys. Chem. A, 107, 9737 (2003).
[3] L. Shaw, et al., J. Power Sources, 177, 500 (2008).

Based on the reaction pathway proposed, the hydrogen release of the LiNH₂ + LiH system can be described at least with the following 6 steps.

$$\begin{split} LiNH_2 &\longrightarrow \frac{1}{2}Li_2NH + \frac{1}{2}NH_3 \# \quad (\text{decomposition at the LiNH}_2/\text{Li}_2\text{NH interface}) \quad (4) \\ \hline \frac{1}{2}NH_3 \# &\longrightarrow \frac{1}{2}NH_3 * \quad (\text{diffusion of NH}_3 \text{ to a Li}_2\text{NH surface site}, *) \quad (5) \\ \hline \frac{1}{2}NH_3 * &\longrightarrow \frac{1}{2}NH_3 + \frac{1}{2} * \quad (\text{desorption of NH}_3 \text{ from the Li}_2\text{NH surface site}) \quad (6) \\ \hline \frac{1}{2}NH_3 + \frac{1}{2}\Delta &\longrightarrow \frac{1}{2}NH_3\Delta \quad (\text{adsorption of NH}_3 \text{ on a LiH surface site}, \Delta) \quad (7) \\ \hline \frac{1}{2}NH_3\Delta + \frac{1}{2}LiH &\longrightarrow \frac{1}{2}LiNH_2 + \frac{1}{2}H_2\Delta \quad (\text{reaction at the LiH surface}) \quad (8) \\ \hline \frac{1}{2}H_2\Delta &\longrightarrow \frac{1}{2}H_2 + \frac{1}{2}\Delta \quad (\text{desorption of H}_2 \text{ from the LiH surface site}) \quad (9) \end{split}$$

The rate of dehydriding will be controlled by the slowest step.

Curve Fitting of the Amount of H₂ Released at 285^oC

<u>Conclusions*</u>: Dehydriding of the LiNH₂ + LiH system is controlled by the slowest step of the decomposition of LiNH₂ which is a diffusion controlled reaction.

* L. Shaw, W. Osborn, T. Markmaitree, X. Wan, J. Power Sources, 177, 500 (2008).

Challenges for Improving Hydriding and Dehydriding Properties

We have established that dehydrogenation of the LiNH₂ + LiH system is a diffusion-controlled process and thus takes place very slowly.

How can we increase the rate of a diffusion-controlled reaction?

1. Nano-engineering to decrease the diffusion distance.

$$x^2 \propto Dt$$

2. Increasing the composition gradient to enhance diffusion via advanced catalysts.

$$J = -D\frac{dC}{dx}$$

3. Increasing the diffusion coefficient to augment the diffusion rate via mechanical activation and doping.

$$D = D_0 \exp\left(-\frac{Q}{RT}\right)$$

Nano-Engineering and Mechanical Activation through High-Energy Ball Milling

LiNH₂ + LiH mixtures with particles of 6 to 120 μ m before milling

Particle sizes reduced to 0.5 to 6 μ m after 3h milling

Nano-Engineering and Mechanical Activation through High-Energy Ball Milling

300MHz ⁶Li MAS NMR Spectra*

Broadening and up-field shifting of ⁶Li peaks indicate that ball milling has not only resulted in structural refinement, but also led to the alternation in the local electronic state around Li nuclei.

* C. Lu, et al., J. Power Sources, 170, 419 (2007).

Enhancing Dehydrogenation of LiNH₂ + LiH Mixtures via Nano-Engineering & Mechanical Activation

The peak temperature for hydrogen release has been reduced by ~ 100°C via ball milling.
 The weight loss for the sample without milling is substantially larger than the theoretical prediction (~ 5.5 wt%) because of the NH₃ emission. In contrast, the milled sample is in excellent agreement with the theoretical prediction.

> The activation energy for dehydrogenation decreases with an increase in the milling time, indicating the effect of mechanical activation.

> The activation energy is also affected by the milling and mixing sequence, suggesting that LiH has the catalytic effect on the decomposition of $LiNH_2$.

Enhancing Hydrogenation/Dehydrogenation through Mechanical Activation at Liquid Nitrogen Temperature

LiNH₂+LiH ball milled at liquid nitrogen temperature (LN₂) displays much faster hydriding/dehydriding kinetics than that ball milled at RT. As a result, LN₂-processed LiNH₂+LiH has improved the utilization of the theoretical storage capacity by 22%.

Enhancing Hydrogenation/Dehydrogenation through Mechanical Activation at Liquid Nitrogen Temperature

VT 300MHz in situ ¹H MAS NMR Spectra

> The narrow peak at 4.1ppm corresponds to both gaseous and chemical and physical adsorbed H_2 molecules, whereas the broad peak beneath the narrow peak is due to the rigid lattice protons.

> Gaseous H_2 is observed below 100°C for LN_2 -milled samples, but not for RT-milled samples. > At 180°C, the amount of H_2 released from LN_2 -milled samples is 4 times more than that from RT-milled samples.

Enhancing Hydrogenation/Dehydrogenation through Mechanical Activation at Liquid Nitrogen Temperature

> LN_2 -processed LiNH₂+LiH has larger crystallite sizes (Fig. A) and a lower specific surface area (Fig. B) than the LiNH₂+LiH processed at RT.

> NMR analysis (Fig. C) reveals an up-field shift of the ⁶Li peak and a stronger surface defect peak (1.8ppm peak) for the LN₂-ball-milled sample.

0

180 min mill at RT 180 min mill at LN2

Enhancing the Reaction Kinetics of Mechanically Activated, Nano-Engineered LiNH₂+LiH via Advanced Catalysts

> Addition of 1 mol% nano-catalyst particles increases the hydriding/dehydriding kinetics.

> Analysis of the dehydriding kinetics indicates that the dehydriding reaction of the catalyzed system is still diffusion-controlled. Thus, it is hypothesized that the added catalyst enhances desorption of NH_3 from the Li_2NH surface and thus creates a large composition gradient for diffusion within the Li_2NH solid.

Improving Hydriding/Dehydriding Properties via Thermodynamic Destabilization

 $Li_2Mg(NH)_2 + 2H_2 \iff Mg(NH_2)_2 + 2LiH$

Reversible storage capacity = 5.5 wt% H_2 ΔH (dehydriding) = 44 kJ/mol H_2

Cycling at 200°C between H₂ pressures of 68 and 0.01 bars

The slow hydriding process needs to be solved to make this material a viable storage system.

Solid-State Hydrogenation/Dehydrogenation of LiBH₄+MgH₂ Enabled via Nano-Engineering and Mechanical Activation

 $LiBH_4 + \frac{1}{2}MgH_2 \iff LiH + \frac{1}{2}MgB_2 + 2H_2$

- 1) Hydrogenation below the melting temperature of LiBH₄ is a strong function of the crystallite size and lattice microstrain.
- 2) The largest hydrogen uptake of 8.3 wt.% in the solid state is achieved using the particles with the smallest crystallites and largest lattice microstrain.

Solid-State Hydrogenation/Dehydrogenation of LiBH₄+MgH₂ Enabled via Nano-Engineering and Mechanical Activation

The gas released during dehydrogenation of $LiBH_4 + MgH_2$ in the solid state is H_2 . Borane, if present, is below the detection limit of the mass spectrometer.

Future Work

Remainder of FY 2008:

□ Further improve hydriding/dehydriding properties of (LiNH₂ + LiH) systems via nano-engineering, mechanical activation, and thermodynamic destabilization (UConn)

Establish the atomic level understanding of the reaction mechanism and kinetics of mechanically activated, nano-engineered (LiNH₂ + LiH) systems (PNNL and UConn)

□ Demonstration of hydrogen uptake and release of (LiBH₄ + MgH₂) systems with a storage capacity of ~ 10 wt% H₂ at 200^oC (UConn)

• FY 2009:

□ Develop the atomic level understanding of the reaction mechanism and rate-limiting steps of mechanically activated, nano-engineered (LiBH₄ + MgH₂) systems (PNNL and UConn)

□ Further enhance hydriding/dehydriding rates of (LiBH₄ + MgH₂) systems (UConn)

□ Improve the hydriding/dehydriding cyclic stability of (LiBH₄ + MgH₂) systems by integrating mechanical activation, nano-engineering, and thermodynamic destabilization (UConn)

Project Summary

Relevance: Explore fundamental mechanisms related to mechanical activation and nano-engineering necessary for improving kinetics of reversible hydrogen storage materials.

Approach:Investigate hydriding/dehydriding properties of $(\text{LiNH}_2 + \text{LiH})$ and
LiBH₄-based materials with different degrees of mechanical
activation and nano-engineering; Enhance the storage
performance based on the understanding developed.

Technical Accomplishments: (i) Identified the reaction mechanism and rate-limiting step in the dehydriding process of the LiNH₂ + LiH systems; (ii) Established the effect of mechanical activation on hydride particles and their hydriding/dehydriding properties; (iii) Proved low temperature milling can introduce a large amount of defects to nano-particles, which can in turn enhance hydriding and dehydriding reactions, (iv) Demonstrated the improved hydriding/dehydriding rates via nano-engineering, mechanical activation, and advanced catalysts even through the reaction rate is controlled by diffusion; and (v) Demonstrated hydriding and dehydriding reactions of (LiBH₄ + MgH₂) systems at the solid state, i.e., below the melting point of LiBH₄ (T_m = 280°C) with 8.3 wt% H₂ uptake.