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Overview

Timeline

* Project start date: FY05
* Project end date: FY10
« Percent complete: 65%

Budget

Total project funding
— DOE share: $939,356
— Contractor share: $280,000

Funding received in FYOQ7:
$225,000

Funding for FY08: $225,000

Barriers

General
Weight & Volume
Rates (Refueling and discharge)

Reversible Solid-State
Material
Hydrogen Capacity & Reversibility
Lack of Understanding of H,
Spillover

Partners

Sample/adsorbed H
Verification, Characterization & Mechanism
NREL, NIST, Rice U, MU/TAMU, APCI

Plan industrial collaboration after the initial
phase of study and sorbent optimization



Project Objectives

 To develop hydrogen storage materials with capacities in
excess of 6 wt% (and 45 g/L) at ambient temperature by
using the spillover mechanism

— To develop and optimize our new Bridge-Building techniques for
spillover to enhance hydrogen storage in MOFs

— To develop direct doping techniques for spillover on carbons

with ultra-high surface areas (higher than all MOFs) (because of
the enormous potential of carbon for H, storage by spillover as to
be explained)

— To obtain a mechanistic understanding for hydrogen spillover in
nanostructured materials for the purpose of hydrogen storage
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Technical Approach

 Use our bridge-building technique to significantly enhance spillover
and storage at ambient temperature for MOFs (US & Foreign Patent
applications filed, Yang et al.,US20070082816A1 &
W02007046881A2, 2006)

« Synthesis of nanostructured carbons with ultra-high surface areas
(>3400 m?/g) and develop effective, direct metal-doping techniques for
spillover-storage at ambient temperature

* Apply deuterium isotope tracer techniques to obtain an understanding
for spillover storage

Results following these three approaches are summarized as follows.
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Technical Accomplishments/ Progress/Results

High-pressure Hydrogen Isotherms at 298K on COF-1 (C;H,BO) bridged with 10% added
Catalyst (5%Pt/AC) (80% COF-1 + 10% catalyst + 10% bridges)
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« Hydrogen uptake can be significantly increased by spillover at 298K, and
the isotherms are nearly linear; i.e., far from being saturated at 10 MPa.

*All H, uptake values in this work are excess capacities.



Accomplishments Slides (con’t)

H, Isotherms at 298 K on MOFs bridged with 10% added catalyst (5%Pt/AC)
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* MIL-101 is a promising candidate for spillover storage, as 1.5 wt% storage is
achieved at 10 MPa on the bridged sample (due to its large surface area).



Hz Adsorbed (wt%)

Accomplishments Slides (con’t)

H, Isotherms at 298 K on MOFs bridged with 10% added catalyst (5%Pt/AC)

MOF-177 [Zn,O(BTB),, BTB = benzenetribenzoate] IRMOF-8 [Zn,0(C,,HO,);], SWRI: SWR_I Validation

(Results from last year’s annual Review)
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» Spillover-storage is fully reversible at 298K (via full desorption by evacuation at 298K).
(A indicates desorption branch down to 1.2 bar)

« MOF-177 and IRMOF-8 are similar; they are formed by [Zn,0]°* clusters and organic
linkers, i.e., Zn,0O (C,,H,,0¢), (MOF-177) vs. Zn,0O(C,,HsO,);(IRMOF-8). A possible
explanation is that a higher metal cluster content favors uptake of spiltover hydrogen.



Accomplishments Slides (con’t)

Isosteric heats of adsorption of H, on bridged metal-organic
frameworks with Pt/carbon (based on isotherms at 298K and 323K)
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Heats of adsorption approximately follow metal-oxide contents.
(AH levels off around 1-2% coverage)



Accomplishments Slides (con’t): Summary Table

Summary Results on Pure and Bridged MOFs
(Bridged MOFs: 10% Pt/AC + 80% MOF with 10% carbon bridges)

BET H, at 77K, H, at 298K, Bridged Sample, AH
Surface Area | 1atm, wt% | 100 atm, wt% | H, 298K, 100atm, | (Bridged),
m?%/g wit%* kJ/mol
IRMOF-8 548 1.4 04 22-4.0 =21
(Vol. Capacity: 22.4-
40.8 g/L*)

COF-1 628 1.1 0.3 0.7 -7
HKUST-1 1296 2.2 0.3 1.1 -9
MIL-101 2930 1.8 0.5 1.5 -13
MOF-177 3100 1.5 0.6 1.5 -10

« Both surface area and heat of adsorption (binding energy) are
important in determining hydrogen storage by spillover.

* Gravimetric and volumetric capacities are based on material only, not system values.
Volumetric capacity is based on a bulk density of 1.02 g/cm? for MOF-8. 9
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Accomplishments Slides

(con’t)

Rates of Adsorption (/), and Desorption (r) at Different End Pressures on Bridged
MIL-101 (T =298 K). Pressure steps (atm): 0520406080100 & Reverse

100

90

80

wm =] |
[=] [=] [=]

Percent completion (%)
-9
o

2.5 3 3.5 4 4.5 5

1.5 2

Time (h)

0.4 0.6 0.8 1 1.2 1.4

0 0.2

Time (h)

 Rates for both adsorption and desorption are fast at low loadings but
become slower at higher loadings.
» Desorption is faster than adsorption, and the desorption rates at 298K exceed
the DOE discharge rate target (of 0.02 g/s/kW).

» Rates of both adsorption and desorption are higher than that on bridged
IRMOF-8, which is consistent with the lower heats of adsorption for MIL-101.
(Note: surface diffusion is the rate-limiting step in adsorption and desorption.)
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H:O adsorption (wt.%)

Accomplishments Slides (con’t)

Water vapor adsorption isotherms at 298 K. P/P, is the ratio of H,O vapor pressure
(P) to saturation pressure at 298 K (P,). Filled symbols: desorption branch.
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* “2007 DOE Technical Plan- Storage, Reversible Materials-Based Storage
Systems (p. 15): An understanding of chemical reactivity is needed particularly
...exposure to air and moisture....”

» All MOFs studied here adsorb moisture very strongly (at low concentrations).

* Some hysteresis is seen due to strongly adsorbed H,O.

11

0.12



Accomplishments Slides (con’t)
XRD of MOFs before and after exposure to ambient air (BDBA:1,4-benzene diboronic acid)
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Among these MOFs, MOF-177 and COF-1 decompose completely in ambient air
(by moisture), while MIL-101 and HKUST-1 are relatively more stable. 12



Accomplishments Slides (con’t)

H, isotherms at 298 K on TC (templated carbon) & 6wt% metal-doped (ultrasound assisted) M/TC.
All M/TC were H,-reduced at 300°C except Ru/TC-T was thermally reduced (in N,) at 900°C (1 hr)
(Metal particle size: 2 - 4 nm)
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« Storage on nanostructured carbons is far from reaching theoretical limit: >2wt% per 1000 m2/g.
» The effect of metal is directly related to the equilibrium amounts adsorbed on the metal.
« Thermal reduction is most effective in anchoring metal particles, leading to more spillover.
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Mechanistic Studies of Spillover with D, Isotopic Tracer - Accomplishments Slides (con’t)

TPD Result for 6 wt% Pt on Templated Carbon (3400 m?/g) after dosing with 0.4 atm H, or D,
at 298 K for 5 min (followed by quench, gas phase removal and TPD)

H, followed by D,

10 K/min
= Pt Particle
5 O Mostly D
@ O Mixed H, D
@® Mostly H

Temperature (K)

Clear evidence is shown for the dissociation-spillover mechanism.
» The desorption step follows a reverse spillover process.
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Accomplishments Slides (con’t)

TPD Result for 6 wt% Pt on Templated Carbon (3400 m?/g) after dosing with 0.4 atm H, or D,
at 298 K for 5 min (followed by quench, gas phase removal and TPD)
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 Again, desorption follows reverse spillover.

« The small D, peak is possibly caused by premature recombination. Bond energy
for D, > H,, i.e., 106 vs. 104 kcal/mol.
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Accomplishments Slides (con’t)

TPD Result for IRMOF-8 (bridged to 5 wt% Pt/C) after dosing with 0.4 atm H, or D,
at 298 K for 5 min (followed by quench, gas phase removal and TPD)
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 Clear evidence is shown for the dissociation-spillover mechanism on MOF.
» The desorption step also follows a reverse spillover process.



Future work plan/Objectives

During FY 2008: Study kinetics of spillover for charge and
discharge steps on both bridged MOFs and Metal/Carbon; provide
further results on the rate-limiting steps in charge and discharge
steps; perform isotope tracer studies on mechanism of spillover-
storage.

Storage by spillover with bridge-building on other high surface area
MOFs: particularly PCN-type MOFs from our Center

Syntheses of carbons with ultra-high surface areas, i.e., >3500
m?/g.

Develop new direct metal-doping techniques on AX-21 and other
ultra-high-surface-area carbons

Obtain basic understanding of the spillover process including
equilibrium and kinetics, using deuterium isotope tracers (D, and
HD)

To achieve the 6 wt% (48 g/L) DOE (interim) system target at 298K
To address issues on fueling rates and other DOE targets
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Summary

H, dissociation and spillover can significantly increase the H,
storage capacity at ambient temperature for all MOFs and
nanostructured carbons.

Spillover-storage on MOFs depends on both surface area and
binding energy.

Spillover-storage on nanostructured carbons depends on how
metals are doped, and is far from reaching theoretical limits.

Desorption rates at ambient temperature for both MOFs and
carbon exceed DOE target for discharge rate.

Deuterium isotope tracer studies showed direct evidence for
hydrogen dissociation and spillover at 298K.

Deuterium isotope tracer studies also showed that desorption
followed a reverse spillover mechanism.
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