(TIAX

Analyses of Hydrogen Storage Materials and On-Board Systems

Project ID # ST1

Cryo-compressed and Liquid Hydrogen System Cost Assessments

> DOE Merit Review June 10, 2008

Stephen Lasher Kurtis McKenney Yong Yang Matt Hooks TIAX LLC 15 Acorn Park Cambridge, MA 02140-2390

Tel. 617- 498-6108 Fax 617-498-7054 www.TIAXLLC.com Reference: D0268

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Timeline

- Start date: June 2004
- End date: June 2009
- 54% Complete

Budget

- Total project funding
 - DOE share = \$1.5M
 - No cost share
- ♦ FY07 = \$170k
- FY08 = \$350k (plan)

Barriers

- Barriers addressed
 - ≻B. Cost
 - ≻C. Efficiency
 - K. System Life Cycle Assessments

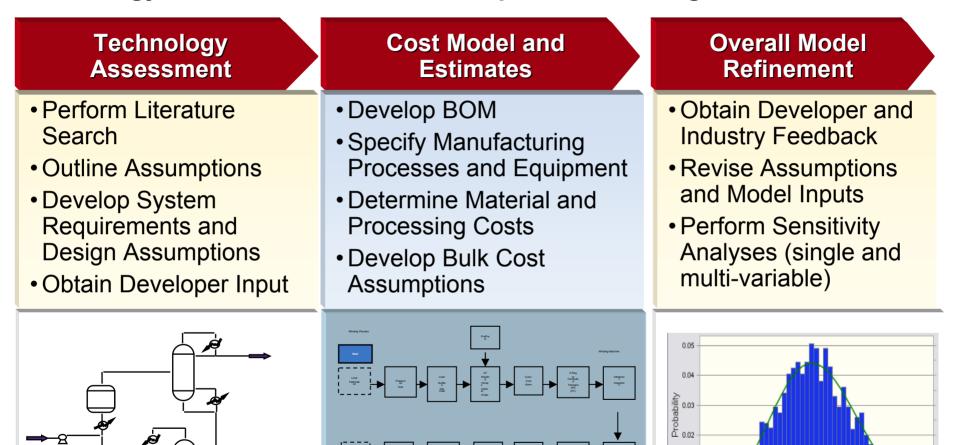
Collaboration

- Argonne and other National Labs
- Centers of Excellence and other developers
- Tech Teams and other stakeholders

This project provides an independent cost assessment of the hydrogen storage technologies being developed for the DOE Grand Challenge.

Objective	Description	Technology Focus					
Objective	Description	2004-2006	2007	2008			
Overall	Help guide DOE and developers toward promising R&D and commercialization pathways by evaluating the status of the various on-board hydrogen storage technologies on a consistent basis						
On-Board Assessment	Evaluate or develop system- level designs to estimate weight, volume, and bottom- up factory cost for the on- board storage system	 Sodium Alanate SBH 	 Liquid H₂ Cryo- compressed H₂ Compressed H₂ (update)* 				
Off-Board Assessment	Evaluate or develop designs and cost inputs to estimate refueling cost and Well-to- Tank energy use and GHG emissions for the fuel chain	• Liquid H ₂ • Compressed H ₂ • SBH*		 Liquid HC Ammonia Borane 			

* Results presented in Backup Slides.


Note that previously analyzed systems will continually be updated based on feedback and new information.

SBH = Sodium Borohydride, HC = Hydrocarbon, AC = Activated Carbon

BOM = Bill of Materials

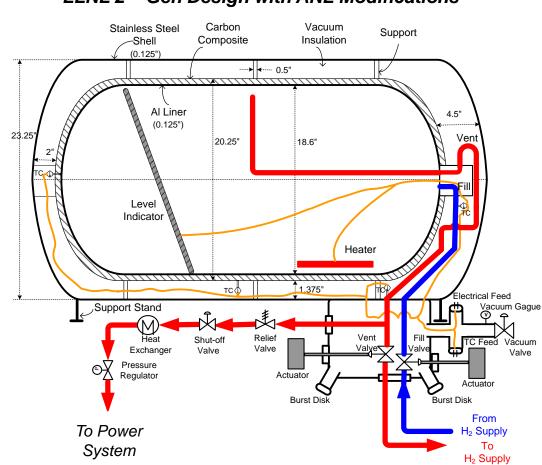
The on-board cost and performance assessments are based on detailed technology assessment and bottom-up cost modeling.

8.20 8.40 8.60 8.80 9.00

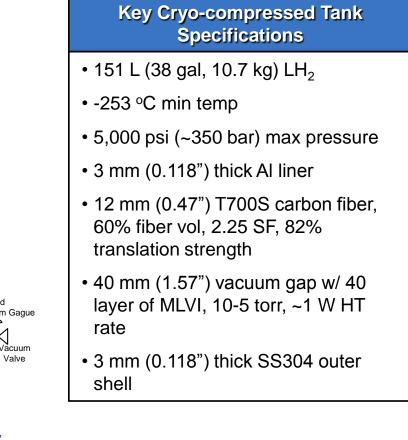
8.00

0.01

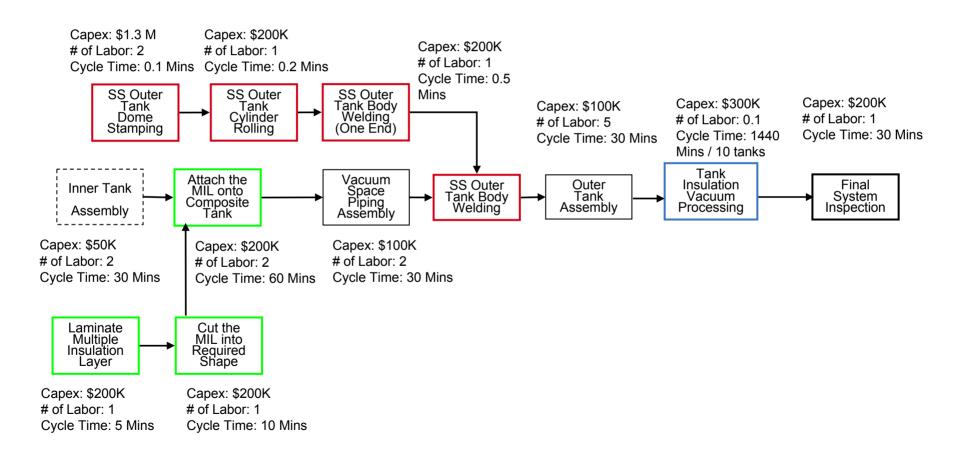
0.00


7.60 7.80

We completed on-board cryogenic system assessments and updated compressed and SBH cost estimates since the last Review.


- Completed cryo-compressed and preliminary liquid hydrogen (LH₂) on-board storage system cost assessments
 - > Based on the LLNL 2nd generation cryo-compressed system with modifications
 - Included processing and detailed component cost estimates
 - > Updated carbon fiber cost based on industry feedback (\$13/lb fiber)
 - > \$14/kWh and \$8/kWh (preliminary) for cryo-compressed and LH₂, respectively
- Updated compressed hydrogen (cH₂) on-board storage system estimates
 - Based on Tech Team and industry feedback for pressure requirements and material cost (\$13/lb fiber)
 - > \$17/kWh and \$27/kWh for 5,000 and 10,000 psi storage, respectively
- Updated Sodium Borohydride (SBH) on-board and off-board system estimates
 - Based on latest information provided by developers (primarily MCell and Rohm and Haas)
 - The higher SBH concentration assumed by MCell results in reduced on-board system size, but still does not meet the DOE 2010 targets
 - New off-board regeneration pathways could reduce costs, but the resulting selling price is still in excess of the goal of \$2-3 kg/H₂ using the base case assumptions

The LLNL second generation tank design was the basis of our cryocompressed storage system cost assessment.

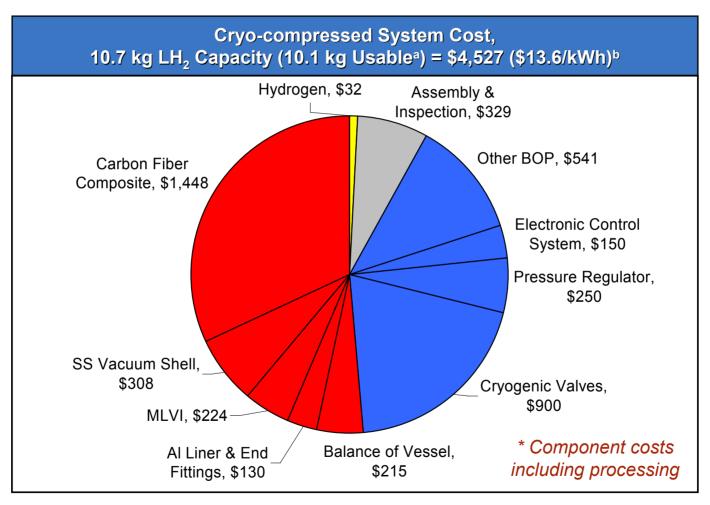


Additional modifications were made based on literature and developer feedback.

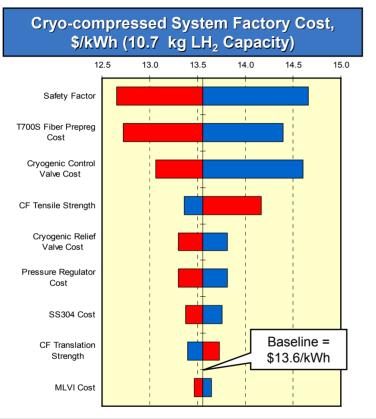
Processing and assembly/inspection costs were generated by developing process maps, and obtaining developer feedback.

Processing Steps for Cryo-tank Insulation, Assembly, and Inspection

The costs of key processing steps were estimated from capital equipment, labor, and other operating costs assuming high volumes (500,000 units/year) and a high level of automation.

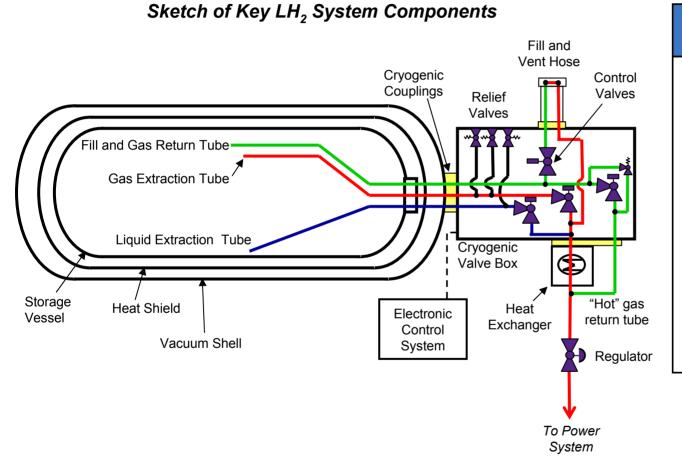

Cryo-compressed Key Processing Steps	Process Cost per Tank	% of Total Processing Cost			
Al Liner Fabrication, Assembly, & Inspection	\$76	13%			
Carbon Fiber Winding Process	\$56	10% 2%			
SS Vacuum Shell Fabrication	\$14				
MLVI Wrapping	\$108	18%			
In-vessel Assembly	\$42	7%			
Ex-vessel Assembly	\$128	22%			
Vacuum Processing	\$119	20%			
Final Inspection	\$40	7%			
Total	\$583	-			

Processing costs make up 13% of the total cryo-compressed system cost.


Carbon fiber and cryogenic valves are the dominant costs, accounting for approximately 50% of the overall system cost.

^a Costs per kWh are based on a projected 10.1 kg (336 kWh) "usable" hydrogen assuming 94% drive cycle utilization (ANL 2006). ^b The total system cost could be reduced by ~5% by using an aluminum shell rather than stainless steel.

Variability in the carbon fiber (CF) related costs and valve costs can significantly affect the overall cost of the cryo-compressed system.


System Multi-variable Sensitivity Analysis						
0.05	System Cost	\$/kWh				
	Mean	14.1				
	Std. Dev.	0.8				
120 120 120 120 100 100 100 100						

-

le Sensitivity Analysis						
-	System Cost	\$/kWh				
	Mean	14.1				
	Std. Dev.	0.8				
16.5	Baseline	13.6				

Kou Sonoitiuitu	Cryo-Compressed							
Key Sensitivity Parameters	Base- line	Min	Max	Comments/Source				
Safety Factor	2.35	1.80	3.0	 Baseline is typical industry standard; Min and Max based on discussions with Quantum and Dynatek (2005) 				
CF Prepreg (Fiber & Matrix) Cost (\$/lb)	16.6	12.8	20.4	 Based on discussion w/ Toray (2007) re: T700S fiber (\$10-\$16/lb, \$13/lb baseline) 1.27 prepreg/fiber ratio (DuVall 2001) 				
Cryogenic Control Valve Cost (\$)	150	100	250	 Discussions with Circle Seal (2007), Valcor (2007), and tank developers (2007) 				
CF Tensile Strength (MPa)	2,940	2,550	3,100	 Baseline from TIAX netting analysis using optimized wrap angle for pressure vessel geometry; Min from Toray T700S data sheet (2007); Max assumes 5% increase over baseline 60% fiber by volume assumed 				
Cryogenic Relief Valve Cost (\$)	75	40	150	 Discussions with Circle Seal (2007) and Swagelock (2007) venders 				
Pressure Regulator Cost (\$)	250	150	350	 Discussions with TESCOM vender and tank developers (2007) 				
SS304 Cost (\$/kg)	4.7	3.7	5.8	 Baseline, Min, and Max are the average, min, and max monthly costs, respectively, from Sep '06 – Aug '07 (MEPS International 2007) deflated to 2005\$s by ~6%/yr 				
CF Translation Strength (%)	81.5%	78%	85%	 Based on Quantum (2005) for 5,000 psi CF tanks 				
MLVI Cost (\$/kg)	50	35	65	 Estimates based on discussions with MPI (2007) 				

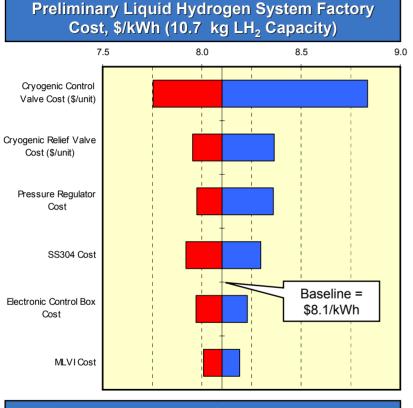
The cryo-compressed tank design was used as a starting point for the liquid hydrogen system cost assessment.

Liquid Hydrogen Tank Specifications

- 151 L (38 gal, 10.7 kg) LH₂
- -253 °C min temp
- 3 mm (0.118") thick Al inner tank
- 40 mm (1.57") vacuum gap w/ 40 layer of MLVI, 10-5 torr, ~1 W HT rate
- 3 mm (0.118") thick SS304 outer shell
- 10% tank ullage requirement

Modifications were made based on literature and developer feedback.

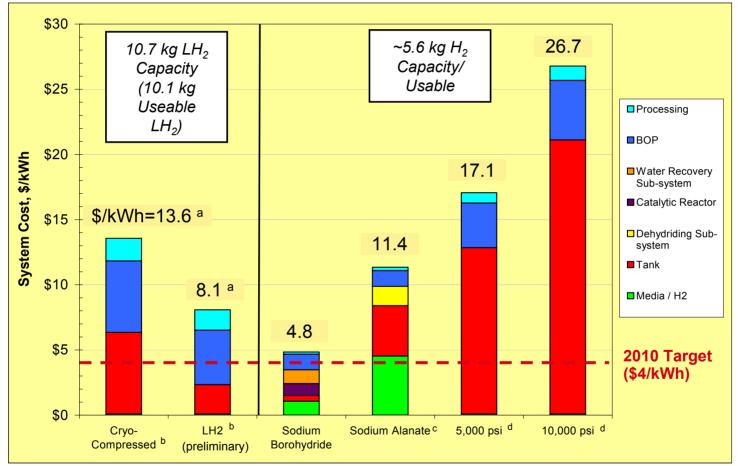
Control and relief valves account for a combined 30% of the total cost, but costs are relatively evenly distributed among major components.



^a Costs per kWh are based on a projected 10.1 kg (336 kWh) "usable" hydrogen assuming 94% drive cycle utilization (ANL 2006) for cryo-compressed drive cycle efficiency. Utilization needs to be updated for LH₂.

^b The total system cost could be reduced by ~8% by using an aluminum shell rather than stainless steel.

Variability in the cryogenic valve costs can significantly affect the overall cost of the liquid system.



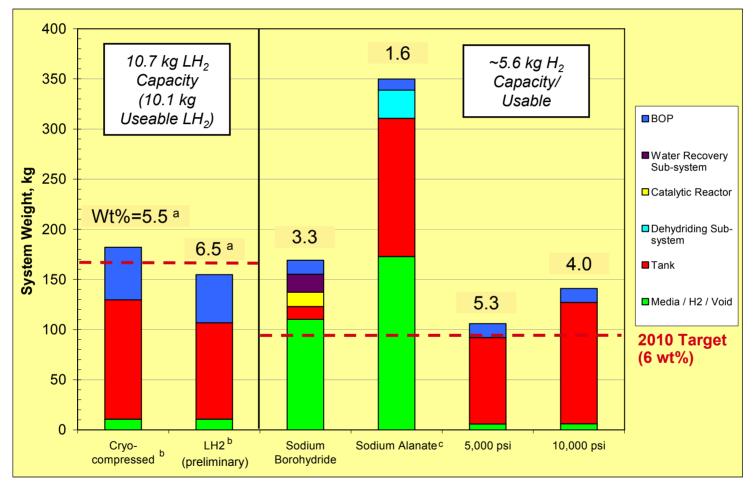
System Multi-variable Sensitivity Analysis							
0.05	System Cost	\$/kWh					
	Mean	\$8.4					
Ê 0.02	Std. Dev.	\$0.3					
	Baseline	\$8.1					

	Liquid Hydrogen System					
Key Sensitivity Parameters	Base -line	Min	Max	Comments/Source		
Cryogenic Control Valve Cost (\$/unit)	105	70	175	 Discussions with Circle Seal (2007), Valcor (2007), and tank developers (2007) 		
Cryogenic Relief Valve Cost (\$/unit)	50	35	75	 Discussions with Circle Seal (2007) and Swagelock (2007) venders 		
Pressure Regulator Cost (\$/unit)	150	100	250	 Discussions with Circle Seal (2007), Valcor (2007), and tank developers (2007) 		
SS 304 Cost (\$/kg)	4.7	3.7	5.8	 Baseline, Min, and Max are the average, min, and max monthly costs, respectively, from Sep '06 – Aug '07 (MEPS International 2007) deflated to 2005\$s by ~6%/yr 		
Electronic Control Box Cost (\$/unit)	150	100	200	 Estimate based on interviews with technology experts (includes microcontroller, valve relays, analog inputs, and power regulator) 		
MLVI Cost (\$/kg)	50	35	65	 Estimates based on discussions with MPI (2007) 		

The cryo-compressed and liquid hydrogen on-board systems are projected to be cheaper than pressurized-only options.

^a Normalizing the cryo-compressed and liquid systems for 5.6 kg of usable hydrogen storage results in system costs of approximately \$20/kWh and \$14/kWh, respectively.

^b An aluminum shell (rather than SS) offers approximately 5% and 8% costs savings for the cryo-compressed and liquid systems, respectively.

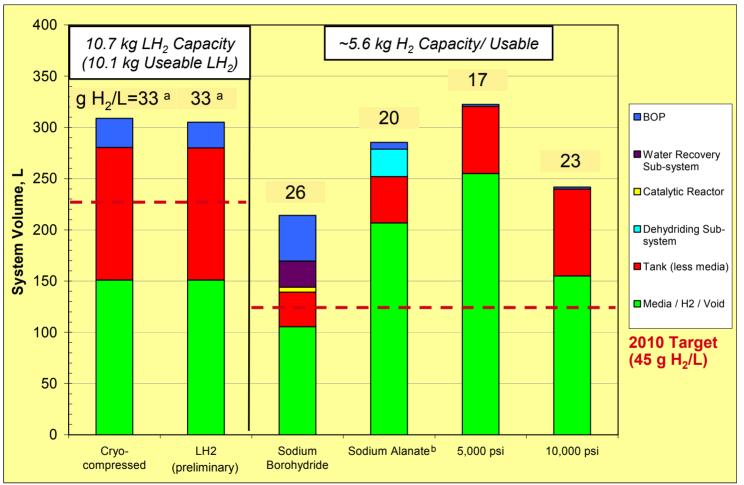

^c The sodium alanate system requires high temp waste heat for hydrogen desorption, otherwise the usable hydrogen capacity would be reduced.

^d Includes updated carbon fiber cost estimate, 2007.

Results Comparison System Weight

The liquid system meets the 2010 weight target, and the cryocompressed system would also meet the target with an aluminum shell^a.

^a Normalizing the cryo-compressed and liquid systems for 5.6 kg of usable hydrogen storage results in system gravimetric capacities of approximately 4.0 wt% and 4.4 wt%, respectively


^b An aluminum shell (rather than SS) increases gravimetric capacities to 7wt% and 9 wt% for the cryo-compressed and liquid systems, respectively.

^c The sodium alanate system requires high temp waste heat for hydrogen desorption, otherwise the usable hydrogen capacity would be reduced.

Results Comparison System Volume

None of the on-board storage systems evaluated to date meet the 2010 volume target given our base case assumptions.

Note: Volume results do not include void spaces between components (i.e., no packing factor was applied).

^a Normalizing the cryo-compressed and liquid systems for 5.6 kg of usable hydrogen storage results in system volumetric capacities of approximately 28 g/L each.

b The sodium alanate system requires high temp waste heat for hydrogen desorption, otherwise the usable hydrogen capacity would be reduced.

Future Work

We will focus on the liquid hydrocarbon- (HC) and ammonia boranebased hydrogen storage systems for the remainder of FY08.

- Complete on-board assessments of APCI liquid HC system and begin assessment of ammonia borane system
 - Solicit feedback from developers and coordinate with ANL on final system requirements and design assumptions
 - Specify manufacturing processes and equipment and determine material and processing costs
 - Use sensitivity analysis to account for uncertainties and potential future technology developments
- Conduct off-board analyses for the liquid HC and ammonia borane systems
 - > Finalize designs and cost inputs for the complete fuel chain
 - Estimate refueling cost and Well-to-Tank energy use and GHG emissions for the fuel chain
- Continue to work with DOE, H2A, other analysis projects, developers, National Labs, and Tech Teams to revise and improve past system models
 - Including finalize liquid hydrogen storage system results based on developer (e.g., Air Liquide) and stakeholder feedback

We have completed certain aspects of on-board and off-board evaluations for eight hydrogen storage technologies.

Analysis To Date		сН ₂	Alanate	MgH ₂	SBH	Cryo- comp	LH ₂	AC	Liquid HC
	Review developer estimates	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
On-	Develop process flow diagrams and system energy balances	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		WIP
Board	Independent performance assessment (wt, vol)	\checkmark	\checkmark		\checkmark	\checkmark	√*		WIP
	Independent cost assessment	\checkmark	\checkmark		\checkmark	\checkmark	√*	WIP	WIP
	Review developer estimates	\checkmark		\checkmark	\checkmark		\checkmark		\checkmark
Off-	Develop process flow diagrams and system energy balances	\checkmark		\checkmark	\checkmark		\checkmark		\checkmark
Board	Independent performance assessment (energy, GHG)	\checkmark			\checkmark		\checkmark		WIP
	Independent cost assessment	\checkmark			\checkmark		\checkmark		WIP
Overall	WTT analysis tool ^a				٦				
Overall	Solicit input on TIAX analysis	\checkmark	\checkmark		\checkmark	$\overline{\mathbf{A}}$	√*	WIP	WIP

* Preliminary results under review.

^a Working with ANL and H2A participants on separate WTT analysis tools.

= Not part of current SOW

WIP = Work in progress