

Enabling Discovery of Materials with a Practical Heat of H₂ Adsorption

Alan Cooper, Hansong Cheng, Garret Lau, Xianwei Sha, Liang Chen, Guido Pez Air Products and Chemicals, Inc.

June 11, 2008

ST22

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date FY05
- Project end date FY10
- ~60% complete

Budget

- Total project \$3,948,220
 - DOE share \$3,158,575 (80%)
- FY07 funding \$575,000
- FY08 funding \$700,000

Partners

- Current collaborations: Penn State, University of North Carolina, NIST (sample exchanges, sample characterization)
- Anticipated/other interactions: Rice University, NREL, ORNL, Univ. of Michigan (coordination of computational modeling efforts)

Barriers

- Technical Barriers- Hydrogen Storage
 - A. System Weight and Volume
 - C. Efficiency
 - P. Lack of Understanding of Hydrogen
 Physisorption and Chemisorption

Objectives

- Development and testing of new materials with high H₂ storage density and appropriate enthalpy of hydrogen adsorption
 - We have leveraged existing materials science and chemistry capabilities in carbon materials and fluorine chemistry to generate new hydrogen storage materials for testing.
- Development of enabling technologies for H₂ storage materials development
 - We have used our accurate, predictive computational methodologies for new materials discovery and mechanistic understanding of hydrogen spillover.
 - We have continued our development of unique characterization tools for accurate H₂ storage measurements and used these to measure our new storage materials and partner samples.
- Our goal: reversible adsorption of hydrogen at near-ambient temperatures at densities that will enable meeting the 2010 DOE system-level targets for hydrogen storage

Milestones

	Milestone
4QFY08	Find optimal BF ₄ -/F- ratio for maximum H ₂ uptake and/or heat of adsorption in intercalated graphite
1QFY09	Study BF_4^{-}/F^{-} intercalation of N-doped carbon with high N levels (nominal C_5N composition); obtain hydrogen isotherm data on these materials
3QFY08	Perform <i>ab initio</i> MD simulations and minimum energy path calculations on BC ₃ -intercalated compounds

Approach: How can we enable and execute discovery of materials with a higher heat of H₂ adsorption?

- Translate predictive computational modeling to development and testing of new H₂ storage materials
 - Novel materials development based upon theoretical predictions of high H₂ storage density and/or enthalpy
 - Materials synthesis (fluorine chemistry, novel carbon-based materials)
- General quantitative computational models for new materials discovery
 - Realize a more practical overlap between computational and experimental work (e.g., modeling mechanism of hydrogen spillover)
 - Highly collaborative within HS CoE
- Accurate measurement techniques
 - Correction for helium adsorption effects on H₂ isotherms

Accomplishments: Completed Computational Model of Hydrogen Spillover Process in MoO₃

 Hydrogen spillover in MoO₃ is facilitated by the extensive Hbonding network → this understanding could benefit the development of carbon-based spillover materials

Hydrogen Spillover Mechanism – Graphitic materials

- H migration from Pt to substrate: facile (<0.5 eV/H)
- H diffusion via chemisorption: difficult (~0.9 eV/H)
- H diffusion via physisorption: facile (<0.02 eV/H)
- Physisorbed H atoms will either recombine into H₂ or form C-H bonds

J.Phys. Chem. C 111, 18995 (2007); 112, 1755 (2008).

"On the dynamic behavior of physisorbed H atoms on graphitic carbon materials," submitted.

Predictive Model Developed for H Spillover Dynamics on Carbon Materials

- Physisorption of H atoms is only metastable. H atoms will either further hydrogenate the substrates or recombine to form H₂.
- Hydrogen storage via spillover is curvature dependent (properly curved carbons, e.g. large diameter SWNT, can enhance spillover efficiency) → guidance to experimental efforts in CoE
- H desorption from small fullerenes or nanotubes will be very difficult.

A Hydrogen Storage Material Under Investigation: F⁻ Anion Intercalated Graphite

 $\Delta E = -24.3 \text{ kJ/mol H}_2$

F⁻ anion is known to interact with H_2 via charge transfer from F⁻ to σ^* -orbital of H_2 *Ab initio* MD on H₂ adsorption in F⁻ anion intercalated graphite at 300K

Partially fluorinated graphite destabilizes the semi-ionic C-F bonds (C-F bond length: 1.43 – 1.54 Å vs. ~1.35 Å in perfluorinated graphite

Calculation of H₂ Physisorption Energies for F⁻ Anion Intercalated Graphite

Complex	H ₂ wt.%	d (Å)	Q _F	⊿E (kJ/mol·H₂)
C ₃₂ F ₈	-	5.698	-0.659	-
$C_{32}F_{8}H_{2}$	0.37	5.613	-0.656	-23.3
$C_{32}F_8 \cdot 2H_2$	0.74	5.602	-0.655	-19.6
C ₃₂ F ₈ ·12H ₂	4.29	6.556	-0.657	-10.5
$C_{32}F_8 \cdot 24H_2$	8.22	7.723	-0.656	-3.6

- Significantly higher physisorption energies at low loading than other carbonbased materials at near-ambient temperatures
 - Note: Use of LDA results in a ca. 40% overestimation of the ΔE .
- C-F bonds are semi-ionic (bondlength: 1.4-1.5 Å vs. 1.35 Å in perfluorinated graphite).
- Low heat of adsorption at high loading

C_xBF₄ from Timrex graphite

¹³C MAS NMR

 X-ray diffraction and NMR data can be used to verify the intercalation of graphite and provide data on the degree of intercalation.

 ¹⁹F and ¹¹B NMR data verify the intercalation of graphite, and provide data on the both the composition of the intercalated species and the ionic/semi-ionic/covalent nature of the C-F.

Temperature Programmed Desorption Spectrum from Heating BF₄⁻ Intercalated Graphite

 This technique is used to determine the decomposition temperature for the desired BF₄-/F⁻ ratio.

Preliminary Results: Hydrogen Isotherms (Excess Capacity) of Mixed F⁻ / BF₄⁻ Intercalated Graphite

• The heat of adsorption is ~2X activated carbon.

Our Challenge: Increase the Hydrogen Capacity of the F⁻ Anion Intercalated Graphitic Carbon Materials

- Need: Increased accessibility of hydrogen to intercalated fluoride ions (only 75 m²/g N₂ BET surface area in experimental sample)
 - Strategy: Investigate alternative graphitic carbons with higher "edge density" and/or inherent porosity
 - Graphite nanofibers
 - Carbon nanotubes
 - Graphitized carbon black
- Need: Increased heat of adsorption of hydrogen
 - Strategy: Nitrogen doping of graphite host

Temp (deg C)

Synthesis of N-doped carbons

- Synthesis method is chemical vapor deposition using acetonitrile in argon and nickel catalyst; typical C:N ratio of ~C₂₆N.
- Particle morphology varies as hollow, large (~2μm) tubes, aggregates of tubes, and amorphous sheets.
- EELS spectra suggest C orbital hybridization similar to C in C₆₀.
- EELS spectra near N edge are not good enough to conclude anything about orbital hybridization.

Synthesis of N-doped carbons

- Synthesis method is reaction of pyridine and Cl₂ at high temperatures; typical C:N ratio of ~C₅N (reported in literature).
- EELS spectra suggest C character similar to amorphous carbon films.
- EELS spectra suggest N character similar to amorphous CN_x films.

Summary Slide – 2007 APR to Today

- Computational study of hydrogen spillover mechanisms
 - Status at APR: in the process of modeling every step of a H₂ spillover process on two materials
 - MoO₃ as a well-known spillover material
 - Graphitic carbon (tie-in to U. of Michigan results)
 - Progress: New understanding of several key steps in the spillover mechanism
 - Transfer of hydrogen from H-saturated catalyst particle to material
 - Migration of hydrogen atoms on graphene
 - Three publications in print, one submitted

Summary Slide (cont.) – 2007 APR to Today

- Experimental and computational investigation of anion-intercalated graphite and nitrogen-doped graphite as hydrogen storage materials
 - Status at APR: Initial computational modeling concluded; intercalation chemistry development beginning.
 - Progress: Additional simulations of hydrogen adsorption in graphite fluoride; first samples generated for hydrogen adsorption testing.
 - Computational proof of higher adsorption enthalpy for nitrogen-doped graphite intercalation complexes
 - Synthetic procedure developed to synthesize mixed ${\rm BF_4^-}\,/\,{\rm F^-}$ intercalation complexes
 - Hydrogen adsorption testing reveals high adsorption enthalpy (~12 kJ/mol) and a surprisingly high capacity with only 75 m²/g N₂ BET S.A.

Future Work

- FY08: Find optimal BF₄⁻/F⁻ ratio for maximum H₂ uptake and/or heat of adsorption in intercalated graphite
- FY08: Study BF₄-/F⁻ intercalation of N-doped carbon with high N levels (nominal C₅N composition); obtain hydrogen isotherm data on these materials
- FY08: Perform *ab initio* MD simulations and minimum energy path calculations on BC₃-intercalated compounds
- FY09: Introduce intercalating species, such as F⁻ and K⁺, into BC₃ to:
 - Induce both physisorption and chemisorption
 - Enhance H₂ adsorption kinetics
- FY09: Explore the optimal concentration of intercalating species in both BC₃ and N-doped F⁻ intercalated graphite