Carbon Aerogels for Hydrogen Storage

T. F. Baumann, M. A. Worsley and J. H. Satcher, Jr.

Lawrence Livermore National Laboratory

Hydrogen Sorption Center of Excellence DOE Hydrogen Program Annual Merit Review June 11, 2007

DOE Hydrogen Program

This presentation contains no confidential or proprietary information

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551 Project ID: ST-24

Project Overview

Timeline

- Project start: FY05
- Project end date: FY09
- Percent complete: 75%

Budget

- Total project funding (proposed): \$1050K
- Funding received in FY07: \$390 K
- Funding for FY08: \$470 K
 - 0.5 FTE + 1.0 Post-Doc

Technical Barriers Addressed by Project

- A. System Weight and Volume
- C. Efficiency
- P. Lack of Understanding of Hydrogen Physisorption and Chemisorption

Partners

- CalTech (Prof. Ahn)
 - H₂ adsorption measurements
- NIST (C. Brown)
 - Characterization by Neutron Scattering Experiments
- UNC-Chapel Hill (Prof. Wu)
 - Advanced NMR analysis
- HRL Laboratories (J. Vajo, MHCoE)
 - Scaffolds for Metal Hydrides

Project Objectives

- Our objective is the design of novel carbon aerogel (CA) materials that meet the DOE system targets (6 wt%, 45 g/L) for on-board vehicle H₂ storage
- Current focus in two areas:
 - Engineering of CA-based spillover materials:
 - •Optimize structure for enhanced H₂ uptake and improved kinetics
 - Storage at reasonable operating temperatures
 - Design of new CA materials as porous scaffolds for metal hydride materials:
 - Potential to improve kinetic and thermodynamic performance of metal hydrides

Project Approach

- Our approach is to utilize the flexibility of CA synthesis for the design new carbon-based spillover materials and metal hydride scaffolds
- CA synthesis allows for control over bulk properties (surface area, pore size, pore volume, density) and for the homogeneous incorporation of dopants (metal catalysts) into the CA matrix
- This approach allows us to control the size and dispersion of H₂ dissociation catalysts as well as the surface chemistry and microstructure of the support in spillover systems
- We can also use this flexibility to design novel nanocomposites that possess the requisite structural properties (large pore volumes, small pore sizes) for metal hydride scaffolding

Previous Accomplishments

- Previous work focused on engineering the CA structure to maximize number of sites available for interaction with hydrogen
- The CA structure (surface area, pore size) was modified through a combination of sol-gel chemistry and thermal activation
- Microporous CAs with surface areas in excess of 3000 m²/g were prepared
- Hydrogen uptake in the activated CAs was reversible
- Surface excess H₂ adsorbed at 77K for high surface area CAs varies linearly with SA up to ~2500 m²/g (weaker dependence at higher SAs)
- CAs exhibited H₂ density of 5.3 wt% and 29.2 g H₂/L at 77K

Kabbour, Baumann, Satcher, Saulnier and Ahn, Chem. Mater. 2006, 18, 6085.

DOE Hydrogen Program

Technical Accomplishments: Design of CA-based spillover materials

- Improved performance in spillover materials (uptake and kinetics) requires synthetic methods that provide control over:
 - Loading, size and dispersion of the dissociation catalyst
 - Interface between the catalyst particle and the support surface
 - Surface chemistry and microstructure of the support material
- These structural features can be readily modified through CA synthesis (i.e. doping method, aerogel structure) to optimize spillover process for H₂ storage
- We have investigated the influence of different metal-doping methods on the performance of CA-based spillover materials:

1.Functionalized CA precursors¹

- 2.Impregnation and reduction of metal salts²
- 3.Vapor deposition techniques, such atomic layer deposition (ALD)³

¹Baumann *et al., Langmuir* **2002**, *18*, 7073; *Chem. Mater.* **2003**, *15*, 3745; *Langmuir* **2005**, *21*, 2647; *Langmuir* **2007**, *23*, 5161. US Patent 6613809. ²Yang et al., *J. Phys.Chem. C* **2007**, *111*, 11086, JACS 2006, 128, 8136.

³Baumann et al., Chem. Mater. **2006**, *18*, 6106; Nanotechnology **2007**, *18*, 055303, Langmuir **2008**, *24*, 943.

Chemistry • Materials • Earth • Life Sciences

AMR08_SP-24_baumann.6

Technical Accomplishments: H₂ Sorption in Metal-doped CAs

- Ni- and Pt-doped CAs (8-10 wt%) prepared by the CA precursor method did not show spillover behavior at room temperature
 - •Likely due to inaccessibility of metal particles in carbon support
- These materials do exhibit unusual H₂ sorption at 77 K:
 - •Higher H_2 gravimetric density than expected according to the Chahine correlation (1 wt% H_2 per 500 m²/g SA)
 - Enhanced sorption enthalpies relative to undoped CAs (>7 kJ/mol)

Technical Accomplishments: H₂ Sorption in Metal-doped CAs

- Metal dopants were incorporated into the high surface area CAs through impregnation using R. Yang's procedure¹:
 - Activated CAs (1400 and 2400 m²/g) were treated with H₂PtCl₆ that are subsequently reduced with H₂ to form metal nanoparticles

- Both Pt-doped ACAs exhibit spillover behavior at RT:
 - Isotherm for 2400 m²/g Pt-CA extrapolates to 1.2 wt% H₂ at 100 bar
 - H₂ isotherms shows slight dependence on surface area
 - Observation indicates non-optimal dispersion of catalyst particles

Chemistry • Materials • Earth • Life Sciences

¹Yang et al *J Phys Chem C* **2007** *111* 11086

AMR08_SP-24_baumann.8

Technical Accomplishments: Atomic Layer Deposition on CAs

- Advances in RT H₂ uptake by spillover can be achieved through improved design of sorbent material:
 - Diffusion distances of H appear to be short (< 1 nm) in C-based materials
 - Optimized dispersion of dissociation sites on support surface is therefore critical to increased H₂ uptake
- We are investigating atomic layer deposition (ALD) as a method to improve dispersion of Pt in CA structure
 - ALD¹: Self-limiting form of CVD that provides atomic level control of material deposition
 - Process can be used to deposit material into high aspect ratio structures, such as the porosity of aerogels²

¹Leskala et al., *Thin Solid Films* **2002**, *409*, 138. ²Baumann *et al.*, *Chem. Mater.* **2006**, *18*, 6106; Biener et al., *Nanotechnology* **2007**, *18*, 055303; Kucheyev et al., *Appl. Phys. Lett.* **2005**, *86*, 083108, *Langmuir* **2008**, *24*, 943.

Technical Accomplishments: Pt ALD on CAs

 New spillover materials were prepared through ALD of Pt on high surface area CAs

HR-TEM of Pt-doped ACA (2400 m²/g) Prepared by atomic layer deposition [CpPtMe₃/O₂], 2 cycles ALD performed by the Bent Group at Stanford

- Overall H₂ uptake is lower due to incomplete Pt deposition
- Important aspect of material performance is *improved kinetics*:
 - Shorter times required for system to reach equilibrium (30 min vs 2-4 hrs)

Technical Accomplishments: CAs as Scaffolds for Metal Hydrides

 We are fabricating CAs as scaffolds for light metal hydrides (LMH), such as MgH₂, LiBH₄ and NaAlH₄

•Work with HRL Laboratories (Metal Hydride CoE)

- Nanoporous scaffolds can improve kinetics of metal hydrides by limiting particle size and reducing diffusion distances^{1,2}
- Structural requirements for scaffolding materials:
 - Large pore volumes (minimize capacity penalty)
 - Small pore sizes (limit particle sizes)
 - Good thermal conductivity
 - Compatible surface chemistry

- Our focus has been on the design of novel CA nanocomposites that possess the requisite properties for MH scaffolding
- CA scaffolds are delivered to HRL for MH infiltration (LiBH₄, Mg) and evaluation of MH-scaffold performance

¹Previously demonstrated with NH_3BH_3 in SiO₂: Autrey *et al., Angew. Chem. Int. Ed.* **2005**, 44, 3578. ²de Jong et al., *Angew. Chem. Int. Ed.* **2006**, 45, 3501; de Jong et al, *Chem. Mater.* **2007**, 19, 6052. Yu et al, *Appl. Phys. Lett.* **2007**, 90, 03410.;

Technical Accomplishments: New CAs Scaffolds

- New CAs with small pore sizes and larger pore volumes have been prepared using a templating approach:
 - Sacrificial template incorporated into aerogel matrix during the sol-gel reaction and removed during carbonization
 - New material combines the large pore volumes of the our original CAs with the small pore size of HRL xerogels

New CA Scaffold APD ~ 15 nm PV = 2.6 cm³/q

HRL Carbon Xerogel APD ~ 13 nm PV = 1.1 cm³/g

Previous LLNL CAs APD ~ 9.5 nm PV = 1.1 cm³/g

APD ~ 40 nm PV = 2.7 cm³/g

 CA with small pore sizes (< 5 nm) delivered to NIST (Jack Rush) for LiBH₄ study

Technical Accomplishments: New CAs Scaffolds

- We have also incorporated carbon nanotubes (CNTs) into the CA framework with the goal of enhancing thermal conductivity
 - CNTs could also be used as "plumbing" for H₂ transport within scaffold

- CA-CNT composites have been prepared with large pore volumes (~4 cc/g), but larger pore sizes (> 20 nm)
- Composites also exhibit enhanced thermal conductivities:
 - CA-CNT (6 wt%): 0.072 W m⁻¹ K⁻¹ vs CA: 0.036 W m⁻¹ K⁻¹

M. A. Worsley, J. H. Satcher, Jr. and T. F. Baumann, Langmuir., 2008, submitted.

Chemistry • Materials • Earth • Life Sciences

AMR08_SP-24_baumann.13

Future Work

- Evaluation of RT H₂ uptake in metal-doped CAs:
 - Utilize ALD for improved dispersion of catalysts (FY08)
 - •Investigate alternative H₂ dissociation catalysts (i.e Ni) (FY08)
 - •Control over structure of CA support may provide some mechanistic insights into spillover diffusion processes (FY08-09)
 - Determine kinetics of H₂ uptake/release in spillover systems (FY09)
 - •Develop methods to "monitor" spillover process (advanced NMR or x-ray absorption/emission techniques?) (FY09)
- Optimization of CA scaffolds for metal hydrides:
 - •Engineering of CA structure (porosity, composites) (FY08-09)
 - Modify CA surface chemistry to improve MH wetting behavior (FY09)
 - Incorporation of catalysts/destabilizing agents (FY09)
- Evaluate reversibility and lifetime in these materials over multiple charge/discharge cycles

Project Summary

- Relevance: Design of new CA materials for hydrogen storage Approach: Incorporation of dopants into high surface area CA to maximize H₂ uptake and modify binding energies
- **Technical Accomplishments:**
 - Synthesized new high surface area metal-doped CA that exhibited RT uptake of hydrogen (1.2 wt% at 100 bar)
 - Fabricated new spillover materials with enhanced H₂ uptake kinetics using atomic layer deposition
 - Prepared new CA nanocomposites as scaffolds for metal hydride systems
- **Center Collaborations:**
 - Prof. Channing Ahn (CalTech): H₂ sorption measurements
 - Craig Brown (NIST): Characterization of activated CA structure by NS
 techniques
 - Prof. Yue Wu (UNC): Characterization of CA structure and H₂ uptake by advanced NMR techniques
 - John Vajo (HRL, MHCoE): CA scaffolds for metal hydrides

Summary for CA Materials

DOE On-Board Hydrogen Storage System Targets

Storage Parameter	Units	2010 S <i>ystem</i> Target	FY07 CA <i>Material</i> Results	FY08 CA <i>Material</i> Results
Specific Energy	kWh/kg (wt% H ₂)	2.0 (6 wt% H ₂)	5.3 wt% at 77 K and 30 bar ¹	1.2 wt% at RT and 100 bar ²
Energy Density	kWh/L (g H ₂ /L)	1.5 (45 g H ₂ /L)	~29 g H ₂ /L	TBD

¹Undoped CA with BET surface area ~3100 m²/g ²High surface area CA (~2400 m²/g) doped with Pt (6 wt%)

