Characterization of Hydrogen Adsorption by NMR

DOE "Hydrogen Sorption Center of Excellence"

Alfred Kleinhammes, B. J. Anderson, Qiang Chen, and Yue Wu

Department of Physics and Astronomy and Curriculum in Applied and Materials Sciences University of North Carolina Chapel Hill, NC 27599-3255

June 11 2008

Project ST25

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Timeline

- Project start date 2/1/2005
- Project end date 1/31/2010
- Percent complete 60%

Budget

- Total project funding
 - DOE share: \$646,178
 - Contractor share: \$161,542
- Funding received in FY07 \$170,000
- Funding for FY08 \$190,000

Barriers

- Barriers addressed
 - Lack of understanding of hydrogen physisorption and chemisorption
 - Insufficient information on H_2 accessible micropores and H_2 kinetics in micropores

Partners

 Center partners NREL (Heben)
 Penn State (Chung, Foley)
 ORNL (Geohegan)
 LLNL (Baumann, Herberg)
 Duke (Liu)

Overall

We provide nuclear magnetic resonance (NMR) support to DOE HS CoE team members in developing reversible adsorbent materials with the potential to meet DOE 2010 system-level targets.

2008

Pore structures are crucial for H_2 storage of sorbent materials. Most adsorbent materials have extremely complicated pore structures. Establishing clear correlations between synthesis, processing, pore structures, and H_2 storage is essential for optimizing the H_2 storage capacity of sorbent materials.

Our objective is to use *NMR porosymetry* analysis to obtain detailed information on the micropore structures. This approach is based on the information of local magnetic field inside micro- and meso-pores probed directly by H_2 . N_2 adsorption-based micropore analysis has certain ambiguities such as the accessibility of micropores by H_2 is not necessarily the same as that of N_2 .

Such NMR study offers a comprehensive picture and correlations between microstructures, binding energy, storage capacity, and kinetics of adsorbent materials.

Approach

NMR is a sensitive detector for hydrogen. It determines quantitatively the number of hydrogen present in a material, provides information on the local environment at which adsorption takes place, and monitors molecular dynamics at different local environments under various conditions. Equipped with high pressure and variable temperature capabilities, all these important aspects of hydrogen storage can be studied as functions of temperature and pressure.

Specifically, NMR obtains information on the wt% of hydrogen storage, just as gravimetric and volumetric techniques provide. In addition, NMR reveals how much of the stored hydrogen are in micropores and how much are in mesopores. It also reveals how accessible micropores are for H_2 at various temperatures or after sample processing treatments of sorbent materials.

We developed an NMR porosymetry approach based on quantitative analysis of NMR parameters. Good correlations are established between the NMR porosymetry analysis and the storage capacity and synthesis and processing conditions of various sorbent materials provided by team members.

NMR Porosymetry: Established the link between the NMR spectral shift, its pressure dependence, and pore-size. Although the observed species is H_2 in all these samples, why is there such a large variation in shift?

Magnetic susceptibility χ induces a local magnetic field B_{loc} in pores, depending on the distance between H₂ and the surface, and gives rise to a shift.

$$\Delta B_{loc} \propto \chi \left[\frac{1}{r^3} + \frac{1}{(d-r)^3} \right]$$

Slit pore

NMR Porosymetry

The NMR spectral shift depends strongly on the distance *r* between H₂ and the surface. There are basically two different values of shift, δ_{ads} for adsorbed H₂ and δ_{gas} for not adsorbed H₂. Because of rapid adsorption and desorption on the NMR timescale, the observed one is the average given by

$$\delta_{abs}(P) = \frac{\delta_{gas} n_{gas}(P) + \delta_{ads} n_{ads}(P)}{n_{gas}(P) + n_{ads}(P)}$$

Since the amounts of adsorbed (n_{ads}) and not adsorbed (n_{gas}) hydrogen depend on pressure *P* differently, δ_{obs} would depend on *P* unless one or the other dominates.

shift:
$$\delta \propto \chi \left[\frac{1}{r^3} + \frac{1}{(d-r)^3} \right]$$

slit pore of 5 nm
-6
-4
-2
0
Distance from surface
observed
0
shift -9

Modeling

$$\delta_{obs}(P) = \frac{\delta_{gas} n_{gas}(P) + \delta_{ads} n_{ads}(P)}{n_{gas}(P) + n_{ads}(P)}$$

Since n_{ads} scales very differently with the pore size d than n_{gas} (2d v.s. 3d), n_{ads} dominates below 1 nm whereas n_{gas} dominates above 100 nm. Also, because of the differences in isotherms, δ_{obs} depends also on P when the P dependence of n_{ads} becomes nonlinear.

DOE Hydrogen Program

7

DOE Hydrogen Program

12

Using these measured $n_{ads}(P)$ and $n_{gas}(P)$ to fit the P dependence of the shift shown on the upper right corner. From that, an average pore size of 20 nm is obtained for Aerogel TFB188CRF, comparable to the pore size of Aerogel TFB170CRF discussed in the previous slide, but with much larger surface area.

P (MPa)

Systems with predominant micropores

In contrast to aerogels, all three samples show a distinct upfield peak that does not shift with increasing pressure. This indicates that all three materials possess micropores of 1 nm in size rather than mesopores. However, the isotherms of carbon nanohorns and activated PEEK do not deviate significantly from linear behavior at room temperature unlike that of B-doped graphitic carbon. Thus, the binding energy of the latter is enhanced as reported earlier.

Carbon nanohorns: David Geohegan (Oakridge) Activated carbon (PEEK): Jie Liu (Duke) B-doped graphitic carbon: Mike Chung (Penn State)

Carbon Nanohorns

David Geohegan, Oakridge

Average pore size: 1 nm; E_{ads} =6.5 kJ/mol

The Oakridge group has recently gained control in their production method over the tube diameter and produced nanohorns with small (~1 nm) diameters. Here we show our NMR study of such small diameter nanohorns. One sample is unopened and the other is opened small diameter nanohorns.

The unopened sample shows a small amount of adsorption, which is apparent at low pressure (0.1 MPa). The opened nanohorns (oxidation in air) show clearly a peak associated with micropores. Since its shift does not depend on pressure, the pore size is estimated to be about 1 nm. The associated binding energy is 6.5 kJ/mol.

Activated Carbon (PEEK)

Jie Liu, Duke University

About 2 wt% at 77 K (volumetric)

Average pore size: 1 nm; E_{ads} =8.1 kJ/mol (NMR)

PEEK is being graphitized through activation in CO_2 at 900°C for certain time period of hours. Some of the samples were found to adsorb more H₂ at 77 K than predicted by the Chahine rule, i.e. 1 wt% for 500 m²/g (see Jie Liu's presentation). A possible reason could be that N₂ cannot access all of the pore regions available to H₂ thus underestimating the surface area.

This sample was PEEK activated in CO_2 at 900°C for 2 hours producing 5 % weight loss followed by 2 more hours of activation with 82 % weight loss due to leak in the system.

This shows that micropores change significantly with the activation process and can be probed sensitively by NMR. The peaks associated with micropores in all these samples show linear pressure dependence at RT unlike in B-doped graphitic carbons. Improvement of binding energy, perhaps by B-doping, is needed for RT H_2 storage.

B-doped graphitic carbon

Mike Chung, Penn State University

Average pore size: 1 nm; E_{ads} =11 kJ/mol (NMR)

Peak 1 is due to free gas in a capillary as an intensity gauge, peak 2 is due to gas in voids, and peak 3 corresponds to H_2 in micropores.

Sample is produced with B-containing precursor, polymerized, and graphitized by annealing at certain temperature, in this case, 800°C (see Mike Chung's presentation).

Langmuir adsorption

It becomes increasingly clear that all carbon-based systems we have looked so far, B-doped graphitic carbon is the only one with a binding energy larger than 11 kJ/mol. The issue is how to increase the number of such adsorption sites with large binding energy.

DOE Hydrogen Program

Another important issue is the accessibility of micropores by H_2 . Here we demonstrate that this is particularly an important issue at lower temperature.

B-doped graphitic carbon

Mass Calibration of NMR Spectra and Isotherms

The ¹H line intensity is directly proportional to the number of hydrogen in the sample and thus provides the basis for measuring the absolute number of H_2 present. Spectra with well defined lines associated with H_2 in micropores can be separated into a free gas and an adsorbed component.

To measure the absolute intensity the observed line intensity has to be compared to a calibration sample. It is best to use the standard internally during a measurement, i.e. the standard and the sample are placed together inside the NMR coil.

Two methods are employed:

1) Insert a capillary in the sample tube surrounded by the sample and measure isotherm simultaneously.

2) Use PDMS (Polydimethylsiloxane) as a standard.

Capillary Method

The capillary contribution to the spectrum (red-blue), a characteristic powder pattern, is compared to the spectrum of the sample (blue). The number of H_2 in the capillary can be computed based on the known behavior of H_2 gas.

The capillary method was used to study adsorption in AX-21, yielding a value of 6.2 wt % at 10 MPa and 100 K. That compares well with the literature value of 5.5 wt % at 77 K.

DOE Hydrogen Program

Mass Calibration of NMR Spectra and Isotherms

PDMS Method

The methyl groups of PDMS (Polydimethylsiloxane) gives rise to a sharp 1H NMR line which can be used conveniently as a intensity reference. About 6 mg of PDMS is added to the sample without great loss of sample space. The spin-lattice relaxation time T_1 of PDMS (5 s) is 100 times longer than T_1 of H₂ (<50 ms) and thus the effect of PDMS on the spectra of the sample can be eliminated by fast acquisition when not needed. The PDMS spectrum is measured under dynamic vacuum conditions, integrated and based on its proton content (4.9 10^{22} H/g) is used to calibrate the recorded spectra.

Results are summarized in the table. NMR results refer to measurements at 100 K and 10 (MPa), literature values are for 77 K.

Sample	wt % (NMR)	wt %_(volumetric)	
		77 K	
AX-21	6.2 (capillary)	5.5	
	100 K		
TFB170CRF	3.1 (PDMS)	4.2	
	115 K		
TFB188CRF	5.4 (PDMS)	5.2	
	100 K		

Future Work

Fiscal Year 2008

• Refine models that quantitatively correlate the experimentally determined NMR parameters with pore sizes (on-going).

- Molecular dynamics simulations on H_2 in pores of various sizes and as function of T and P (on-going).
- •Complete measurements and quantitative analysis of carbon nanohorns and B-doped graphitic carbons.

•Continue measurements of activated PEEK and MOF.

Fiscal Year 2009

• Continue NMR measurements and analysis of systems developed by team members (see collaborations below).

In addition to measurements we employed so far, we plan to carry out lower temperature measurements in order to:

•Differentiate between H_2 in pores of different sizes by using lower temperature (< 77 K) to slow down the exchange rate between pores.

• Determine H-H distance in adsorbed H_2 in boron doped graphite (30 K > T > 4.2 K).

Collaborations:

• Oakridge nanohorn samples: explore synthesis and processing parameters on promising scaffold (on-going)

- Activated PEEK: fine tune processing parameters (on-going)
- Polymer samples from Argonne (on-going)
- B-doped activated carbon with small pore size from Penn State (Chung, Foley)
- Spillover samples from Michigan and Livermore; emphasis on nature of adsorbed hydrogen: atomic or molecular
- MOF samples (on-going)

Project Summary

Relevance: NMR provides a *microscopic picture* of adsorbed hydrogen that complements macroscopic techniques and offers immediate feedback for optimizing synthesis and processing conditions. Information about pore structures, including pore sizes and connectivity, can be extracted in addition to information about binding energy and the amount of adsorbed hydrogen.

Technical Accomplishments:

- Developed an NMR porosymetry approach connecting NMR parameters to pore sizes and hydrogen storage capacity.
- Estimated pore size, binding energy and weight percentage of various samples provided by team partners.
- Categorization of samples according to pore size and interconnectivity of their pores and measured binding energies.
- Small nanohorn samples and activated PEEK were found to be composed of a network of narrow pores.
- Boron doped graphitic carbon shows enhanced binding energy but with slow kinetics at low temperature.

Sample	Average Pore Size	Binding Energy	Wt % NMR Volumetric
		(kJ/mole)	
B-doped graphitic	~ 1 nm	11	0.2 ?
carbon	(very slow kinetics)		
M. Chung, Penn State			
Nanohorns	~ 1 nm	6.5	
D. Geohegan, Oakridge			
Activated PEEK	~ 1 nm	8.1	
J. Liu, Duke	(slow kinetics)		
Aerogels	~ 20 nm	6.2	3.1 (TFB170) 4.2
T. Baumann, Livermore	(connected pores)		5.4 (TFB188CRF) 5.2
AX-21	connected pores	5.6	6.2 5.5