



# A Synergistic Approach to the Development of New Hydrogen Storage Materials, Part I

Jean M. J. Fréchet, Martin Head-Gordon, Jeffrey R. Long, Thomas J. Richardson, and Samuel S. Mao

Department of Chemistry, University of California, Berkeley and Division of Environmental Energy Technologies, Lawrence Berkeley National Laboratory

June 10, 2008



Project ID # ST27

This presentation does not contain any proprietary, confidential, or otherwise restricted information

# Overview

#### Timeline

- Project start: 12/1/04
- Project end: 11/30/09
- Percent complete: 70%

#### Budget

- Total funding expected: \$2.9M
  - \$1.8M from DOE to UC Berkeley
  - \$600k from DOE to LBNL
  - \$500k in cost-sharing
- Funding FY07: \$400k
- Funding FY08: \$600k

#### Barriers

- Identify new materials enabling a hydrogen storage system achieving:
  - 2 kWh/kg (6 wt %)
  - 1.5 kWh/L (0.045 kg/L)
  - 4 \$/kWh

### Partners

- ChevronTexaco
- General Motors Corporation
- Electric Power Research
  Institute

# **Overall Program**

Synthesis of porous polymers (Fréchet) Synthesis of porous coordination solids (Long) Calculations of H<sub>2</sub> binding energies (Head-Gordon) Part I\* Synthesis of destabilized hydrides (Richardson) (EERE) H<sub>2</sub> storage characterization instrumentation (Mao) Part II Metal/metal hydride nanocrystals (Alivisatos) (BES) Synthesis of nanostructured boron nitrides (Zettl) Theory for boron nitride materials (Cohen and Louie)

#### H<sub>2</sub> Adsorption in a Hypercrosslinked Polymer



poly(chloromethylstyrene-codivinylbenzene)

#### **Comparison of Hypercrosslinked Polymers**



#### **Hypercrosslinked Polyaniline**





#### **Effect of Crosslinking Route**



• Crosslinking with methylene units gives highest surface areas

#### H<sub>2</sub> Uptake in Hypercrosslinked Polyaniline



## Variation of N<sub>2</sub> Uptake in Zn<sub>4</sub>O(BDC)<sub>3</sub> (MOF-5)

| preparation | N <sub>2</sub> uptake<br>(mmol/g) | SA <sub>BET</sub><br>(m²/g) | SA <sub>Langmuir</sub><br>(m²/g) |  |
|-------------|-----------------------------------|-----------------------------|----------------------------------|--|
| 1           | 11.8                              | 570                         | 1010                             |  |
| 2           | 14.5                              | 950                         | 1250                             |  |
| 3           | 29.7                              |                             | 2900                             |  |
| 4           | 31.6                              |                             | 3080                             |  |
| 5           | 34.4                              |                             | 3360                             |  |
| 6           |                                   | 3530                        | 4170                             |  |



Zn<sub>4</sub>O(BDC)<sub>3</sub>

(1) Panella, Hirscher Adv. Mater. 2005, 17, 538

(2) Yan, et al. Microporous Mesoporous Mater. 2003, 58, 105

(3) Li, Eddaoudi, O'Keeffe, Yaghi *Nature* **1999**, *402*, 276

(4) Dailly, Vajo, Ahn J. Phys. Chem. 2006, 110, 1099

(5) Rowsell, Millward, Park, Yaghi J. Am. Chem. Soc. 2004, 126, 5666

(6) Wong-Foy, Matzger, Yaghi J. Am. Chem. Soc. 2006, 128, 3494

## **Optimized Synthesis and Activation of Zn<sub>4</sub>O(BDC)<sub>3</sub>**

Zn(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O 1.8 g, 6.1 mmol



0.33 g, 2.0 mmol

Zn<sub>4</sub>O(BDC)<sub>3</sub>⋅*x*DEF

0.37 g, 73%

colorless cubic crystals

• Heating too high or too long gives yellow-brown crystals with reduced storage capacity

#### **Evacuation procedure**

Soak crystals in 10 mL DMF for 8 h (6 times) Soak crystals in 10 mL CH<sub>2</sub>Cl<sub>2</sub> for 8 h (6 times) Evacuate crystals at 25 °C under dynamic vacuum until an outgas rate of <1 mtorr/min is achieved



#### Decomposition of Zn<sub>4</sub>O(BDC)<sub>3</sub> in Air



### Variation of N<sub>2</sub> Uptake in Zn<sub>4</sub>O(BDC)<sub>3</sub>

| preparation | N <sub>2</sub> uptake<br>(mmol/g) | SA <sub>BET</sub><br>(m²/g) | SA <sub>Langmuir</sub><br>(m²/g) |
|-------------|-----------------------------------|-----------------------------|----------------------------------|
| 1           | 11.8                              | 570                         | 1010                             |
| 2           | 14.5                              | 950                         | 1250                             |
| 3           | 29.7                              |                             | 2900                             |
| 4           | 31.6                              |                             | 3080                             |
| 5           | 34.4                              |                             | 3360                             |
| 6           |                                   | 3530                        | 4170                             |
| air-free    | 44.5                              | 3800                        | 4400                             |

(1) Panella, Hirscher Adv. Mater. 2005, 17, 538

(2) Yan, et al. Microporous Mesoporous Mater. 2003, 58, 105

(3) Li, Eddaoudi, O'Keeffe, Yaghi Nature 1999, 402, 276

(4) Dailly, Vajo, Ahn J. Phys. Chem. 2006, 110, 1099

(5) Rowsell, Millward, Park, Yaghi J. Am. Chem. Soc. 2004, 126, 5666

(6) Wong-Foy, Matzger, Yaghi J. Am. Chem. Soc. 2006, 128, 3494

### High-Pressure H<sub>2</sub> Uptake in Zn<sub>4</sub>O(BDC)<sub>3</sub>



- At 40 bar, a record physisorbed excess capacity of 7.1 wt % is achieved
- Total uptake is the amount of gas contained within the volume of the crystals

#### High-Pressure H<sub>2</sub> Uptake in Zn<sub>4</sub>O(BDC)<sub>3</sub>



- Knowledge of total uptake permits calculation of the volumetric storage density
- At 100 bar, a record physisorbed storage density of 66 g/L is achieved

#### Kinetics and Cycling for H<sub>2</sub> Uptake in Zn<sub>4</sub>O(BDC)<sub>3</sub>



- Results are upon exposure to a manifold of H<sub>2</sub> gas at 45 bar and 298 K
- No detectable loss in capacity or kinetics after 24 adsorption-desorption cycles

#### Room-Temperature H<sub>2</sub> Uptake in Zn<sub>4</sub>O(BDC)<sub>3</sub>



- At 298 K, framework offers little improvement over density of pure H<sub>2</sub> gas
- Due to very weak interaction of H<sub>2</sub> with the framework ( $\Delta H_{ads} \approx 5$  kJ/mol)

#### Coating the Surfaces with Cr(CO)<sub>3</sub> Units



- Infrared spectrum matches that observed for molecular analogue
- Elemental analysis and NMR spectroscopy indicate attachment to all rings

#### **Matrix Isolation Chemistry in a Framework**



- Infrared spectra match those observed for molecular analogues
- Compound 3 is much more stable than analogue generated in frozen Xe

#### Strong H<sub>2</sub> Binding at Cr<sup>0</sup> Centers



- Infrared spectra match those observed for molecular analogues
- Cr<sup>0</sup>-H<sub>2</sub> complex in compound **2** is stable indefinitely at room temperature!

# Range of H<sub>2</sub> Binding Interactions

dispersion < electrostatics < charge-transfer



Lochan, Head-Gordon Phys. Chem. Chem. Phys. 2006, 8, 1357

# Understanding H<sub>2</sub> Binding A New Analysis Method

#### Decompose interaction energies rigorously into:

- Geometric distortion
- Frozen density interaction
- Induction
- Forward- and back-donation
- Small higher-order charge transfer



 $\Delta E = -122 \text{ kJ/mol}$ 

# **Relative Effect of Substituent**

Metal chosen as Cr<sup>0</sup>





# Effect of Substituent (R)



• Electron-donating groups enhance binding, while electron-withdrawing groups reduce binding

-Tunability is 7% of binding

–Energies are for three bound H<sub>2</sub> molecules

- Correlates with back-donation, electrostatics
- Quantitative information; qualitative insight

-BDC<sup>2-</sup> substituents can fine-tune binding

-Coarse-tuning must come from different metals

# **Effect of Metal Substitution**



• Heavier isoelectronic elements:

 $(C_6H_6)Cr(H_2)_3$ binding per H2 of 68 kJ/mol $(C_6H_6)Mo(H_2)_3$ binding per H2 of 84 kJ/mol

• Lighter transition elements:

 $(C_6H_6)Cr(H_2)_3$ binding per H2 of 68 kJ/mol $(C_6H_6)Ti(H_2)_4$ binding per H2 of 32 kJ/mol

• Shows coarse tuning is possible

Still need to examine synergy of these effects

#### **Destabilization of Metal Hydrides**



- Attempts at alloying of Mg in order to reduce  $\Delta H$
- Success in partial substitution to form  $Mg_{1-x}A_x$  (A = Mn, Fe, Ni)
- Some increases in plateau pressures, but poor kinetics
- Attempts to substitute Na and Li for Mg are underway

#### Attempts to Generate MgH<sub>2-x</sub>F<sub>x</sub> Solid Solutions

**Preliminary results, not yet reproduced:** 

- MgH<sub>2</sub> + 10 mol% MgF<sub>2</sub> ball-milled
- 1<sup>st</sup> desorption at 663 K: 6.1 wt% (based on MgH<sub>2</sub> component)
- 1<sup>st</sup> absorption at 573 K: 7.4 wt%
- 2<sup>nd</sup> desorption at 663 K: 7.2 wt%

Does fluoride catalyze H<sub>2</sub> uptake and release via solid solution formation?



#### **Destabilization of Complex Hydrides?**



- Attempts at partial substitutions to adjust thermodynamics and kinetics
- Substitutions at both Mg and transition metal sites, as above
- Study effects of substituting F for H (e.g.,  $CaH_{2-x}F_x$  known for all x)
- Small fluoride additions reported to enhance reactivity of Mg<sub>2</sub>Ni