

... for a brighter future

R.K. Ahluwalia, T. Q. Hua, J-K Peng and R. Kumar

2008 DOE Hydrogen Program Review June 9-13, 2008 Arlington, VA

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Project ID: ST2

U.S. Department of Energy

UChicago ► Argonne_{uc}

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Overview

Timeline

- Project start date: Oct 2004
- Project end date: Sep 2009
- Percent complete: 70%

Barriers

- H₂ Storage Barriers Addressed:
 - A: System Weight and Volume
 - B: System Cost
 - C: Efficiency
 - E: Charging/Discharging Rates
 - J: Thermal Management
 - K: System Life-Cycle Assessments

Budget

FY07: \$430 KFY08: \$525 K

Interactions

- FreedomCAR and Fuel Partnership
- Storage Systems Analysis Working Group, MH COE, CH COE
- BNL, LANL and PNNL, LLNL, MCEL and RH, TIAX, H2A, and other industry

Objectives

- Perform independent systems analysis for DOE
 - Provide input for go/no-go decisions
- Provide results to CoEs for assessment of performance targets and goals
- Model and analyze various developmental hydrogen storage systems
 - On-board system analysis
 - Off-board regeneration
 - Reverse engineering
- Identify interface issues and opportunities, and data needs for technology development

Approach

- Develop thermodynamic and kinetic models of processes in cryogenic, complex metal hydride, carbon, and chemical hydrogen storage systems
- Calibrate, validate and evaluate models
- Work closely with the DOE Contractors, Centers of Excellence, Storage Tech Team, other developers, and Storage Systems Analysis Working Group
- Assess improvements needed in materials properties and system configurations to achieve H₂ storage targets

Technical Accomplishments

- Cryo-Compressed Hydrogen (March 2008): Backup slides
- Updated the storage capacity of LLNL Gen-2 system

Carbon Storage (December 2007): Backup slides

Revised analysis to reflect 2010 and 2015 delivery P targets

Metal Hydrides (June 2008)

- Performance of on-board system with alane slurries
- WTT efficiency for off-board regeneration of alane
- Sodium Borohydride (Go/No-Go Decision: September 2007)
- Performance of on-board system with SBH hydrolysis
- WTT efficiency of regenerating SBH by MCEL and RH flowsheets

Hydrogen Storage in Liquid Carriers (December 2007)

WTT efficiency of rehydrogenation of organic liquid carriers

Hydrogen Storage in Amine Borane (October 2008)

 WTT efficiency of AB regeneration schemes being developed at the CHCoE

H₂ Storage as Alane Slurry

- Investigated several methods of storing alane in powder and liquid forms and selected slurry for initial evaluation
- Pros and cons of storing alane as slurry
 - Pros: heat transfer, easier refueling, liquid infrastructure, practical
 - Cons: reduced material capacity, added difficulty in recycling spent fuel

Component	Key Assumptions
Fuel Tank	Volume-exchange concept, 10%
	ullage, 5.6 kg usable H_2
AIH ₃ Slurry	70 wt% AIH ₃ in light mineral oil
Heat Transfer Fluid	XCELTHERM ®
Dehydrogenation Reactor	Slurry on tube side, HTF on shell side, s/d=1.1, slurry at 100 bar, HTF at 3 bar, 1.6 g/s peak H ₂ consumption in FCS
AIH ₃ Dehydrogenation Kinetics	Avrami-Erofeyev rate expression
HEX Burner	50 kWt, non-catalytic, HTF pumped to stack P, 100°C approach T, 5% excess air
H ₂ Ballast Tank	100 bar, 75ºC, AL-2219-T81 alloy tank, 2.25 SF
Recuperator, H ₂ Cooler, Spent Slurry Cooler	5 - 50°C approach T

Conversion of Doped and Undoped Alane

- LHSV = Volumetric flow rate of slurry divided by the volume of slurry inside the dehydrogenation reactor, τ = 1/LHSV
- Need to heat HTF to 200-260°C for 95% conversion at peak flow rate.
- Minimum heat load is 11.3 kW or 13.2 kJ/mol-H₂, nearly double the heat of reaction at 298 K.
- Whereas doping (kinetic data from BNL) significantly destabilizes alane at low temperatures, effect is small at high conversion.

Start-up Energy, **Time and H₂ Buffer**

- Start-up transient defined as the time and energy needed to heat the components in the HTF circuit by burning H₂ stored in the buffer tank (50-kW burner)
- Minimum start up time and energy are about 30 s and 2.2 MJ. Start-up time can be reduced by employing a larger burner but at the expense of start-up energy.
- H₂ buffer stores sufficient H₂ for start-up and provide H₂ to the fuel cell at 50% of peak flow rate

Stability of Doped and Undoped Alane

Undoped

- Peak H₂ loss rate is ~8 g/h at 50°C, <0.4 g/h at 25°C</p>
- H₂ loss is limited by kinetics
- Autonomy time of fully-charged tank is >1500 h at 50°C

Doped

- Peak H₂ loss rate is 35-75 g/h.
- H₂ loss is limited by heat transfer as well as kinetics
- Autonomy time of fully-charged tank at 50°C is 550-1050 W-d.

Storage Efficiency

- Start-up efficiency determined assuming 100,000 miles driven, 50 mpgge fuel economy and 10,000 cold starts over 10 years
- Drive cycle efficiency defined as the fraction of H₂ released (after the start-up transient) that is available to the fuel cell
- System efficiency is the product of drive cycle and start-up efficiencies

Assessment of Results

- Under optimum conditions, ~80% of H₂ stored in slurry is available for use in fuel cell system.
- Usable gravimetric capacity
 <4.25 wt% H₂, ~75% gravimetric efficiency
- Usable volumetric capacity ~50 g-H₂/I, 73% volumetric efficiency

Data Needs

- Preparation of 70-wt% AlH₃ slurry, effect of particle size distribution, surfactants, etc
- DeH₂ kinetics of AIH₃ slurry, fluid dynamics of slurry in micro-channel HX
- H₂ recovery from fuel tank

	Value	Units	Range
Intrinsic Material Capacity	10.0	g-H ₂ /g-AIH ₃ , %	Variable T _{HTF} ,
H ₂ Capacity in Slurry	7.0	g-H ₂ /g-slurry, %	Fixed LHSV
Recoverable H ₂ Capacity	6.9	g-H ₂ /g-slurry, %	(: 11.3-97.9%
Available H ₂ Capacity	6.3	g-H ₂ /g-slurry, %	(_{DC} : 82.8-93.1%
Usable H ₂ Capacity	5.6	g-H ₂ /g-slurry, %	_{(SU} : 84.7-91.3%
Usable Gravimetric Capacity	4.2	g-H ₂ /g-system, %	0.5-4.2
Usable Volumetric Capacity	49.8	g-H ₂ /L-system	5.9-50.0
Peak H ₂ Loss at 25°C	0.3	g-H ₂ /h	0-0.3
Peak H ₂ Loss at 50°C	7.7	g-H ₂ /h	0-7.7

SBH On-Board System

- Reactor is cooled evaporatively with on-board water, steam recovered in condenser: fixed relationship between P, T and SBH concentration
- Theoretical minimum water: Amount of water that boils off (function of reactor P and T) and the amount consumed in SBH reaction
 - On-board water required for 24-wt% and 30-wt% SBH formulations
- Minimum tank temperature to prevent precipitation of NaBO₂ determines allowable NaBH₄ concentration in fuel
- SBH system heat load (56 kW for 1.6 g/s of H₂) comparable to heat duty on FCS main radiator.

Key Results for SBH On-board System

- On-board SBH system may not meet the 2007 storage capacity targets with 24-wt% formulation
- No clear pathway to meet the 2010 or 2015 storage targets

Material Capacity	5.1 wt% H ₂ for 24-wt% SBH formulation
	6.4 wt% H ₂ for 30-wt% SBH formulation
Gravimetric Capacity	3.3 wt% H ₂ for 24-wt% SBH formulation
	4.3 wt% H ₂ for 30-wt% SBH formulation
Volumetric Capacity	27.6 g-H ₂ /I for 24-wt% SBH formulation
	36.4 g-H ₂ /I for 30-wt% SBH formulation
Reactor Operating Conditions	165-177°C at 9-12 bar for adiabatic operation
Reactor Heat Management	Need on-board water for >24-wt% SBH formulations
Freeze Issues	Yes, for both on-board water and spent NaBO ₂ solution
Precipitation Issues	Tank must be above 90°C for 24-wt% SBH formulation
	Slurry handling and precipitate recovery options not explored
Heat Rejection Issues	Major problem common to exothermic reactions with large ΔH

Note: Loss in capacity due to tank heating and condenser heat rejection not included.

Regeneration of Alane - ANL Reference Flowsheet

Form AIH₃ as adduct to TMA in ether in the presence of LiAIH₄.

$$n_1Al + \frac{3n_1}{2}H_2 + n_2N(CH_3)_3 \xrightarrow[\text{catalyst}]{\Lambda-\text{pres.}} (AlH_3)_{n1} \cdot (N(CH_3)_3)_{n2}$$

Displace TMA from TMAA in ether by TEA (transamination).

$$(AIH_3)_{n1} \cdot (N(CH_3)_3)_{n_2} + n_2 N - R_2 \longrightarrow (AIH_3)_{n1} \cdot \begin{pmatrix} R_1 \\ N - R_2 \\ R_3 \end{pmatrix}_{n2} + n_2 N(CH_3)_3$$

Decompose TEAA in presence of LiAIH₄ (thermal decomposition)

$$(AlH_3)_{n1} \cdot \begin{pmatrix} R_1 \\ N-R_2 \\ R_3 \end{pmatrix}_{n2} \xrightarrow{\Lambda} \frac{n_1}{catalyst} \begin{pmatrix} AlH_3 \end{pmatrix}_x + n_2 N - R_2 \\ R_3 \end{pmatrix}_{n2}$$

 For high conversion, use excess amounts of reagents.
 H₂ Stoichiometry: Φ_{H2}
 TMA Stoichiometry: Φ_{TMA}
 TEA Stoichiometry: Φ_{TEA}

FCHtool Analysis: Preliminary WTT Efficiency

- Without credit for availability of low-grade heat, the WTT efficiency is 40.5% (Φ_{H_2} =10, Φ_{TMA} =1.4, Φ_{TEA} =1.4).
 - Q: 71.9 MJ/kg-H₂, E: 3.6 kWh/kg-H₂
- A single-variable parametric analysis indicates that WTT efficiency is most sensitive to the availability of low-grade waste heat.
- We are working with BNL to verify the process steps and determine the operating conditions.

Regeneration of BH₃NH₃ from BNH₂

- Collaborating with CHCoE to develop flowsheets for estimating η_{WTT} .
- Completed preliminary evaluation of one of three schemes.
- Single reactor for digesting BNH₂ and reducing products using excess amounts of thiol (α) and tin MH (γ)
- Solid AB recovered as precipitate and thiol recycled by reacting with excess amount of formic acid (β)
- Thiol and excess formic acid recovered by fractional distillation
- MH is recovered by thermally decomposing MH-COOH products
- Direct hydrogenation of CO₂ for reformation of formic acid

FCHtool Analysis: Primary Energy & WTT Efficiency

- Preliminary estimate of WTT efficiency for spent AB regeneration by LANL scheme is 17 – 34%
- Formic acid reformation of CO₂ consumes significant amount of energy in the MH recycle step of the overall scheme
- LANL is using ANL results to develop alternate schemes that may not require formic acid in the MH recycle step

Rehydrogenation of Organic Liquid Carriers

Multi-stage hydrogenation reactors

- Declining T profile: H₂ quench and inter-stage regenerative cooling
- Overall exothermic reaction: process Fresh fuel used in furnace, low-grade heat recovered in H₂ cooler
- Operating P is a function of conversion and T

N-ethylcarbazole

Parameter	1-Stage	3-Stage
Temperature, °C	196	240/232/196
Pressure, bar	60	60
Cumulative Conversion	1.0	0.6/0.8/1.0
H ₂ Circulation Ratio	21.7	16.2
Electricity, kWh/kg H ₂	2.02	1.68
Heat input, MJ/kg H ₂	0.8	0.8
WTT, %	59.8	60.9

Regeneration of SBH from NaBO₂

Electrolysis with Na recovery (MCEL)

- NaOH and NaBO₂ electrolysis
- Na recovery is the most energy intensive step

Na Recovery	WTT Efficiency,%	
Option	Baseline	Sensitivity Analysis
AnH-AqH	21.3	19.3 - 23.1
AqH-AqH	18.6	17.2 - 20.2
An-Aq	17.7	16.4 - 19.2
Aq-Aq	15.6	14.6 - 16.7

Metal reduction (Rohm and Haas)

- Direct reduction of NaBO₂ with metal
- Regeneration of metal from its oxide accounts for 70-80% of total primary energy

Metal Reduction Option	WTT Efficiency, %
Option A	11.8
Option B	13.9
Option C	14.0
Option D	17.0

Future Work

Continue to work with DOE contractors and CoE to model and analyze various developmental hydrogen storage systems.

Metal Hydrides

- Refine analysis for alane with experimental support from BNL
- Refine organometallic flowsheet and investigate electrochemical and supercritical CO₂ extraction routes

Sorbent Storage

Extend work to metal organic frameworks and other sorbents

Chemical Hydrogen

- Evaluate energy consumption and fuel cycle efficiency of candidate materials and processes
- Liquid carrier option
 - Extension to the "best" APCI carrier with the "best" APCI catalyst
 - Refine off-board rehydrogenation analysis
 - Collaborate with TIAX on cost analysis

