

Thermodynamically Tuned Nanophase Materials for Reversible Hydrogen Storage

Ping Liu and John Vajo HRL Laboratories, LLC Malibu, CA

June 12, 2008

Project ID # ST30

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: March 2005
- Project end date: Feb 2010
- Percent complete: 60%

Budget

Total Project Funding:

- Phase I 3 years: \$1.65M
 - DOE Share: \$1.20M
 - Contractor Share: \$0.45M
- Phase II 2 years: \$1.1M
 - DOE Share: \$0.8M
 - Contractor Share: \$0.3M

• Funding for FY08:

\$350K as of 4/1/07 (DOE), \$150K (cost share)

Technical Barriers

- A. System weight and volume
- C. Efficiency
- E. Charging and discharge rates

Partners

MHCoE collaborations:

- U. Pitt, Georgia Tech: modeling of new systems and kinetic barriers
- Stanford: thin film systems
- Caltech, JPL, Hawaii, NIST: scaffolds
- Intematix: catalysis

- DOE collaborations:

- Drexel, LLNL, PNNL: carbon scaffolds

- International collaboration

- Norway IFE: synchrotron XRD

Overall

To develop and demonstrate a safe and cost-effective lightmetal hydride material system that meets or exceeds the DOE goals for reversible on-board hydrogen storage

2007/2008

- To identify and test new high capacity Li- and Mg-based destabilized hydrides
 - Screen candidate LiBH₄ + MgX destabilized systems and evaluate energetics

and kinetics

- > Down-select systems for additional work
- Evaluate sorption kinetics and thermodynamics of LiBH_4 and Mg in carbon aerogel scaffolds
 - Investigate effects of pore size and pore size distribution on reaction rates of LiBH₄
 - > Incorporate Mg into the aerogel and measure its kinetics

Month/Year	Milestone or Go/No-Go Decision		
June-07	Milestone: Incorporate Mg into carbon aerogel. Facilitated Mg incorporation with Ni or Cu as a wetting layer. Continue to improve process to reduce aerogel destruction and increase Mg loading.		
Sept-07	Milestone: Complete screening of LiBH ₄ +MgX system and down select for further studies. Tested X=Si and Ni and found Ni system to be reversible with promising kinetics; work to continue on this system.		
Sept-08	Milestone: Incorporate the LiBH ₄ /MgH ₂ destabilized system into nanoscale scaffold. Successfully incorporated LiBH ₄ and MgH ₂ separately. Working to encapsulate the combined system. Measure hydrogen sorption thermodynamics and kinetics; incorporate catalysts into the system and investigate their effect on reaction rate.		

Approach: – *MH Destabilization and Nano-engineering* –

Hydride Destabilization

(addresses thermodynamics)

Reduce reaction enthalpy by forming dehydrogenated alloy

- If alloy is stable w.r.t metal then hydride is destabilized
- System cycles between H-containing state and metal alloy \Rightarrow *lower* ΔH

Destabilization results in lower $\triangle H$ and $T_{1 bar}$

From Petricevic, et al., Carbon 39, 857 (2001)

Nano-engineering

(addresses kinetics)

Decrease diffusion distances, nanoporous scaffolding

- Shorter diffusion distances: faster hydrogen exchange
- More efficient catalysis pathways
- Nano-scaffolds as hosts for nanostructured hydrides:
 ⇒ structure- directing agents, mitigate particle agglomeration

Enhanced reaction rate and improved cycling

- Potential systems include: X = F, CI, OH, O, S, Se, CO₃, Si, SO₄, Cu, Ge, & Ni
 - > 12 destabilization reactions identified and characterized using HSC modeling software
 - ➢ H-capacities ranging from 5.4-9.6 wt.%, T_{1 bar} from -10°C to 430 °C
 - > X = F, S, Se, CO_3 , Cl, and Cu tested previously
- In FY07/08, two new systems tested, X = Si and Ni: 4LiBH₄ + Mg₂Si↔ 4LiH + 2MgB₂ + Si + 6H₂ (7.3 wt.%, T_{1 bar} = 230 °C) 4LiH + 2MgB₂ + Si absorbs 5.5 wt % H₂ at 150 bar, 350°C Hydrogenation forms LiBH₄ and Mg₂Si However upon dehydrogenation Mg₂Si does not react

$4\text{LiBH}_4 + \text{Mg}_2\text{NiH}_4 \leftrightarrow 4\text{LiH} + 2\text{MgB}_2 + \text{Ni} + 6\text{H}_2(8.3 \text{ wt.\%})$

System cycles forming ternary boride(s) -- see following slides

Results for LiBH₄/Mg₂Ni may indicate new class of systems

emperature (°C)

System cycles at ~ 6.5 wt % with some degradation

Weight Percent

LiBH₄/Mg₂NiH₄ appears to have formed upon hydrogenation
Ternary borides formed upon dehydrogenation; appear to cycle
Further characterization (FTIR, NMR) required

 $4LiBH_4 + Mg_2NiH_4 \longrightarrow 1/5Li_{2.4}Ni_5B_4 + 3.52LiH + 1.6MgB_2 + 0.4Mg + 8.3 wt\% H_2$

 $4\text{LiBH}_4 + \text{Mg}_2\text{NiH}_4 \leftrightarrow 1/3\text{MgNi}_3\text{B}_2 + 4\text{LiH} + 1.6\text{MgB}_2 + 8.0 \text{ wt\% H}_2$

 $4\text{LiBH}_4 + \text{Mg}_2\text{NiH}_4 \leftrightarrow 1/7.5\text{Mg}_3\text{Ni}_{7.5}\text{B}_6 + 4\text{LiH} + 1.6\text{MgB}_2 + 8.0 \text{ wt\% H}_2$

- Three ternary borides have XRD patterns consistent with our observations
- Further work to characterize reaction with NMR is planned
- Suggests computational and experimental efforts to search for other Li(Mg)-transition metal borides

Motivation:

- Scaffolds are effective structure-directing agents for nanoscale hydrides
- Kinetics improved by limiting particle size and diffusion distances
- Thermodynamic changes possible through surface/interface energy effects
- Initial work demonstrated feasibility using LiBH₄ incorporated into carbon aerogels (in collaboration with T. Baumann, LLNL)

Current Effort:

- optimize pore size and pore size distribution
- incorporate Mg into aerogels
- incorporate full LiBH₄/MgH₂ destabilized system into aerogel

Rate for LiBH₄@aerogel ~60X rate for LiBH₄/graphite control sample

т1

• Rate for 13 nm > 25 nm, indicates influence of pore size

Relatively slow rate for 4 nm indicates requirement for access

2007 Status: Mg@Carbon Aerogel

- Nickel "wetting layer" enables incorporation of Mg from melt
 However, 900 °C is too high to preserve aerogel structure
- Lower temperatures needed

Lower Temperature Process Improves Mg Encapsulation

Lower temperature (700 °C vs. 900 °C) reduces aerogel break down
Cube samples contain bulk Mg impurity

- MgH₂ in aerogel can be fully dehydrogenated \checkmark
- P_{eq}(250 °C) equal to bulk value, <u>no change in thermodynamics</u>

Encapsulation Improves MgH₂ Desorption Kinetics

- Time (hr)
- Ni & Cu wetting layers catalyze dehydrogenation
- Rate without wetting layer still higher than (uncatalyzed) milled MgH₂

EXAMPLE Practicality of Aerogel Encapsulation

- **1. Gravimetric and Volumetric Penalties**
 - Current aerogels:
 - ~ 1 cm³/g for 5 to 10 nm pore sizes
 - up to > 4 cm³/g for pore sizes > 20 nm
 - If kinetic improvements are sufficient, then will need:
 - ~ 5 to 10 nm pore sizes with > 3 cm³/g pore volume

This is difficult but not impossible (requires thinner scaffold walls which will exacerbate mechanical stability issues)

2. Other issues

- Chemical stability, i.e., CH₄ formation from carbon scaffolds
- Mechanical stability over multiple cycles? (Note: volume changes during cycling are contained within aerogel particles)

Aerogels are a useful research tool for studying nanoscale effects. Practical use will require advances in the aerogels themselves

Future Work – FY2007/08 –

New Destabilized Systems

- Further characterize the LiBH₄/Mg₂Ni reaction
- Explore oxide-based destabilized reactions
 Ex: 6LiBH₄ + B₂O₃ ⇔ 3Li₂O + 8B +12H₂ (12.0%)

Nanoporous Scaffolds

- Continue to work towards incorporating full LiBH₄/MgH₂ destabilized system into carbon aerogel
 - Complete work on Mg incorporation (evaluate U Hawaii samples)
 - Add LiBH₄ to selected Mg@aerogel samples (test full system)
 - Continue to understand effects of pore size and pore size distribution
 - Optimize aerogel materials for pore size and volume

Summary <u>– FY 2007/08 –</u>

New Destabilized Systems

- Screened new LiBH₄/MgX systems, X = Si and Ni
 - Observed new Ni based destabilized system with reversible capacity of ~ 6.5%
 - Observed the formation of ternary borides, pointing to potential new direction of discovery

Nanoporous Scaffolds

• Quantified rates for LiBH₄ dehydrogenation in aerogel:

- at 300 °C, rate in aerogel is 60X rate for control sample

- Incorporated Mg into aerogel at reduced temperature to minimize degradation of aerogel (in progress)
- Measured dehydrogenation rates for Mg@aerogel

 with Ni wetting layer/catalyst, the rate at 250°C comparable to best catalyzed bulk samples

Began to understand effects of pore size and pore size distribution

- smaller pores lower reaction temperatures; hydrogen access is important

Program Direction – By System –

Destabilized System	Benchmark	2007 Status	2007/08 Progress	Future
LiBH₄ / MgH₂ @C aerogel 11.4 wt.%, 0.095 kg/L w/o aerogel, est. T _{1 bar} =170°C	Could meet 2010 system weight and volume capacity goals (assuming 25% aerogel and 25% system penalties)	Lowered LiBH ₄ dehydrogenation temp by 70°C in C-scaffold	 Reduced capacity penalty to 40% Measured 10x equilibrium pressure Incorporated Mg into aerogel Measured > 150x reaction rate 	 Incorporate full destab. system in scaffold Optimize scaffold
LiBH ₄ / Mg ₂ NiH ₄ 8.3 wt%, est. T _{1 bar} =150°C	Could meet 2010 system capacity goal (but only small system penalty)	Reversible capacity of ~6.5% at 350°C Slight degradation observed		Candidate for incorporation into scaffold
LiBH ₄ / MgF ₂ 7.6 wt%, est. T _{1 bar} =150°C	Could meet 2010 system capacity goal (but only small system penalty)	Hydrogen uptake ~6.5% at 300-350°C Dehydrogenation 5.3% Not fully reversible		Candidate for incorporation into scaffold
LiBH₄ / MgS 8.0 wt%, est. T _{1 bar} =170°C	Could meet 2010 system capacity goal (but only small system penalty)	Hydrogen uptake ~6% at 300°C Dehydrogenation 4.3% Not fully reversible		Candidate for incorporation into scaffold
Other LiBH₄ / MgX 4-10 wt.%, est. T _{1 bar} : -10 to 430°C	Could meet 2007 goal (including moderate system penalty)	Sorption meas.: X=CO ₃ No destabilization	Sorption meas.: X=Cl, Cu No destabilization	•Test new destab. agents, X=O, OH, Ni •Use nano-engineering to improve kinetics