

Chemical Vapor Synthesis and Discovery of H₂ Storage Materials: Li-Al-Mg-N-H System

Z. Zak Fang and H. Y. Sohn University of Utah

Project ID ST31

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start March 2005
- Finish March 2010
- Percent complete 60%

Budget

- Total project funding DOE share: ~\$800K
 Contractor share: \$200K
- Funding received for FY07: \$150K
- Funding for FY08: \$150K (+\$150K for PCT)

Barriers

- Reversible hydrogen content not sufficient (MYPP Barrier A),
- Inadequate kinetic properties (MYPP Barrier B)
- Desorption T's too high (MYPP Barrier (MYPP Barrier B)

Partners

- JPL, CalTech, GE, UNR, U Hawaii, SNL, SRNL, ORNL, U Pitt, CMU, Georgia Tech, Intematix,
- Project Lead: U of Utah 2

Objectives

Overall

- Discover new solid hydrides that meet reversibility and kinetics requirements
- Develop chemical vapor synthesis process (CVS) for production of nanosized solid metal hydrides
- Demonstrate the effectiveness and unique properties of nanosized solid hydride materials

FY07-08

- Understand reaction mechanisms of materials based on lithium alanates (destabilized by light metal amides), and LiMgN,
- Establish capability and quantify NH₃ co-production during dehydrogenation,
- Synthesize new materials using high-energy high-pressure reactive milling process,
- Synthesis of nano precursor and hydride powders using Chemical Vapor Synthesis (CVS) process.

Milestones

Month/Year	Milestone or Go/No-Go Decision	Milestone Status
April - 06	Milestone: Complete design and set-up of the chemical vapor synthesis reactor systems and demonstrate their feasibility.	Achieved.
September - 08	Milestone: Demonstrate feasibility of selected materials (LiMgN and Li ₃ AlH ₆ +3LiNH ₂)for hydrogen storage based on their capacity, reversibility, kinetics, and thermodynamic properties.	
September - 09	Go/No-Go Decision: Based on comprehensive characterizations of the thermodynamic and kinetic properties of LiMgN and Li3AlH6+3LiNH2, Go/No-Go decisions on these two material systems will be made.	
September - 10	Milestone: Full report, conclusions, and recommendations on selected materials.	

- Collaborate with MHCoE Theory Group to identify promising candidate materials (LiMgN)
- Exploit interactions between amides, alanates, and simple hydrides to discover new reactions / material systems,
- Use TGA, XRD, and FTIR as basic rapid screening tools, and NMR, in-situ XRD, and PCT for in-depth characterizations and understanding,
- Use high-pressure high-energy (HPHE) mechanochemical milling method to synthesize nanosized and non-equilibrium materials,
- Use Chemical Vapor Synthesis (CVS) process to produce nanosized precursor powders (e.g. Al, Li. Mg, LiMgN, MgB₂).

Accomplishments Highlights

- 1. Using PCT, confirmed that LiMgN is a <u>reversible</u> material with 6.6 wt. % or greater capacity, characterized reaction mechanisms with XRD, FTIR, NMR.
- 2. Elucidated the cycling mechanism for $Li_3AlH_6+3LiNH_2$
- 3. Identified the critical dependence of the regeneration of Li_3AlH_6 on the heating rate of hydrogenation process.
- 4. Developed and used pH-ion meter capability to quantify the concentrations of NH₃ during dehydrogenation.
- 5. Identified the role of heating rate in NH_3 release from hydrogenated LiMgN.
- 6. Conducted preliminary measurement of the reaction enthalpy of LiMgN.
- 7. Achieved improved desorption properties of $7MgH_2/TiH$ system prepared by high pressure high energy milling.
- 8. Made nanosized Al powder using CVS method.

I. Reactions of LiNH₂ with lithium alanate materials

$$Li_3AlH_6 + 3LiNH_2 \longleftrightarrow Al + 3Li_2NH + \frac{9}{2}H_2$$

-- Expected to have theoretical hydrogen capacity in the 6-7 wt. % range, coupling known reactions...

II. Reactions Leading to LiMgN

 $MgH_2 + LiNH_2 \rightarrow LiMgN + 2H_2$

-- Theoretically predicted by MHCoE partners (Johnson, Sholl, Alpati) to have $\Delta H = 32kJ/molH_2$, with 8.2% theoretical hydrogen capacity.

Given that:

- Li_3AlH_6 decomposes to LiH and H₂
- LiH releases H₂ when reacting with LiNH₂

Perhaps we can place a source of LiH (from Li_3AIH_6) in close proximity to LiNH₂ to get enhanced H₂ evolution:

$$Li_{3}AIH_{6} \Rightarrow LiH + AI + H_{2} + LiNH_{2} \Rightarrow Li_{2}NH + H_{2}$$

- 1. Chen, J.; et al. J. Phys. Chem. 2001, 17, 1665
- 2. Chen, P.; et al. Nature, 2002, 420,320
- 3. Luo, W.; J. Alloys Compd., 2004, 381, 284

Anticipated Rxns (with amide in 2 forms):

$$Li_3AlH_6 + 3LiNH_2 \longleftrightarrow Al + 3Li_2NH + \frac{9}{2}H_2$$
 7.2wt% H₂

or by analogy....

$$\frac{2}{3}Li_3AlH_6 + Mg(NH_2)_2 \longleftrightarrow \frac{2}{3}Al + Li_2Mg(NH)_2 + 3H_2 \quad \textbf{6.5wt\% H}_2$$

$Li_3AIH_6/3LiNH_2$ Releases 4.9 wt.% H_2

Basic reactions, capacity, and reversibility confirmed by TGA, XRD, PCT, and NMR analysis.

- Two plateau pressures at ~1 and 60 bar respectively.
- van't Hoff plot shows the material is less stable than MgH₂.

NMR confirms $AIH_6 \iff AI$ conversion

Characterization of Li₃AIH₆+3LiNH₂ (Bowman, Hwang):

- ➢ ²⁷Al NMR results prove that the system shows stable cycling behavior:
 Al+3Li₂NH + 9/2H₂ ⇔ Li₃AlH₆ + 3LiNH₂
- \geq ²⁷Al NMR: identifies Al(M), Li₃AlH₆, AlN (small), Al₂O₃ (small)
- There is unknown species found in ²⁷Al NMR of hydrogenated UT9 at -23.7 ppm, while the AlN was increased noticeably as the ads/des cycle was performed

10

Rehydrogenation Depends on Heating Rate

Hydrogenating AI + Li_2NH (the dehydrogenated product): Hydrogenating using heating rates of 1,2, 5 and 10 °C/min at P = 172 bar H₂

The heating rate needs to be higher than 5 °C/min and the reaction temperature needs to be greater than 220 °C in order to make the reversible conversion. Results confirmed by ²⁷Al and ⁶Li NMR studies.

(Li₃AIH₆+3LiNH₂) Stable with Cycling and Modest O₂ Exposure

Start with ball-milled Li₃AIH₆/3LiNH₂

- Isotherm taken before and after 540 cycles shows a small loss in H₂ capacity (~0.6%) using 100 ppm O₂ in UHP hydrogen.
- Therefore, material loss by volatilization (NH₃) is a negligible problem for this material under the conditions of this study.
- ➢ Note that cycling LiNH₂ + LiH ↔ Li₂NH + H₂ in Industrial hydrogen (with no Li Alanate) showed ~2.6% hydrogen loss after 500 cycles under similar cycling conditions

 $3LiNH_{2} + 3LiH \leftrightarrow 3Li_{2}NH +$ $3H_{2}(4.9 \text{ wt\%}) \Delta H^{0} = -45$ $kJ/molH_{2}$ $Li_{3}AIH_{6} \leftrightarrow 3LiH + AI + 3/2H_{2}$ $(2.4 \text{ wt.\%}) \Delta H^{0} = 32 \text{ kJ/mol}H_{2}$

New Candidate Material - LiMgN

A theoretically predicted reaction by MHCoE theorists (Alapati, Johnson, Sholl, et.al*):

 $MgH_2 + LiNH_2 \rightarrow LiMgN + 2H_2$ $\Delta H = 32kJ/mol H_2$

Potential Advantages:

- \succ all the hydrogen in MgH₂ and LiNH₂ could be released (theoretical 8.2%)
- \succ by-passes the undesirable imide (Li₂Mg(NH)₂) which forms when the MgH₂:LiNH₂ ratio is 2:1**

Questions:

- Does the rxn proceed?
- \succ Is it reversible?

- *. Alapati, S.V.; Johnson, K.J., Sholl, D.S. J.Phys.Chem., 2006, 110, 8769
- **. Luo, W.; J. Alloys Compd., 2004, 381, 284

TGA Data: first, hydrogenate Ti-doped LiMgN, then desorb....

1 260Rehydrogenation 240R 0 conditions: 220Weight change (wt%) emperature 200Pressure: 2000 psi H₂ 180 160 ~8 wt% weight loss 140 Temperature: 160 °C 120 (degree 100 Holding time: 6 hours 80 \cap 60 40 -8 20 -9 20 80 100 0 60 12040 Time LiMgN can be hydrogenated (min) at temperatures below 240 °C

TGA of rehydrogenated TiCl₃-doped LiMgN

TPD for LiNH₂+MgH₂ after jar-roll milling for 48 hours

Measuring ΔH of the dehydrogenation reaction of LiNH₂+MgH₂

DTA curve of the dehydrogenation reaction of LiNH₂+MgH₂=LiMgN+2H₂

- One reaction step detected during the dehydrogenation of LiNH₂+MgH₂
- The ∆H value for the reaction is 33.5 kJ/mol H₂, which is close to the theoretically predicted reaction enthalpy of 29.7 (31.9) kJ/ mol H₂ reported by Alapati¹ et al using the USPP (PAW) approach.

1. Alapati, S. V.; Johnson, K. J.; Sholl, D. S. *J. Phys. Chem. B* **2006**, *110*, 8769.

TPA of LiMgN: H_2 pressure 140 bar. 6.8 wt% of H_2 pick-up. Note that ~2 wt% of H_2 is adsorbed at the room temperature (further study needed).

TPD for LiMgN after 1st hydrogenation at 172 bar and 240 °C for 10 hours

18

Pressure, bar

S

First independent confirmation of the rehydrogenation of LiMgN by SRNL

Isothermal Re-hydriding of LiMgN (Anton)

Cycle MgH2:LiNH2 (4%TiCl3)

- Nominal pressure of reservoir: ~130 bar
- wt% rehydrided: ~ 5.7
- Staring material: dehydrided sample at 280 °C
- Possible 2-step rehydriding reaction in the process of being characterized. To be verified in additional experiments.

METAL HYDRIDE CENTER OF EXCELLENCE

Hydrogenated LiMgN Products Probed by NMR

UT5: LiMgN after hydrogenation at 138 bar and 240 °C NMR by Bowman, Hwang

Hydrogenated LiMgN: ¹H is inconclusive (maybe MgH₂ + LiNH₂) while ⁶Li shows LiH + LiNH₂.

LiMgN hydrogenation rxn pathways are complex

METAL H₂ HYDRIDE CENTER OF EXCELLENCE

H₂ Release from Hydrogenated LiMgN Probed by in-situ XRD (Zhao and Rijssenbeek)

imagination at wo

hydrogenated $-LiMgN \xrightarrow{\Delta} Li_{2x}Mg_{1-x}(NH)_2 + MgH_2 \xrightarrow{\Delta} LiMgN$ 22

Hydrogenated/Dehydrogenated LiMgN Probed by XRD

- \blacktriangleright MgH₂ and LiH are formed in the hydrogenation process.
- LiMgN reformed after a hydrogenation and dehydrogenation cycle

Cycled LiMgN Probed by FTIR

- A) TiCl₃-doped LiNH₂+MgH₂ (starting mat.)
 -) LiMgN
 - LiMgN after hydrogenation

FTIR results showed: $Mg(NH_2)_2$ is formed in the hydrogenation process.

Measuring ΔH of the dehydrogenation reactions of hydrogenated-LiMgN

DTA curve of the dehydrogenation reaction of hydrogenated-LiMgN

- Two reaction steps detected during the dehydrogenation of the hydrogenated LiMgN sample
- ➤ The ∆H values for the two reactions are 15.35 and 23.56 KJ/mol H2 respectively.

Proposed reaction pathway based on XRD, FTIR and in-situ XRD results to date. Results in partial agreement with theoretical expectations

Measuring NH₃ Emission from Amides

The gas products from the system can be carried to an acid solution by inert gas (Ar). If NH_3 is formed during the dehydrogenation process, the acid solution can catch all the NH_3 gas to convert to NH_4^+ . Then the pH-ion meter can measure the NH_4^+ concentration via a NH_4^+ ion-selective electrode.

Measuring NH₃ using pH-ion meter connected to TGA:

- pH-ion meter measures the changes of pH value of the solution
- The pH-ion meter is calibrated by 3-point calibration using the standard pH buffers (4, 7, 10) before any measurements.
- When the gas containing NH₃ is fed into the solution, NH₃ reacts with H⁺ to form NH₄⁺, which changes the pH value.
- The concentration of NH₄⁺ is measured based on the changes in pH values.

-- the instrument was calibrated by measuring NH_3 release from LiNH₂, combined with TGA measurements

 NH_3 concentration during dehydrogenation of the hydrogenated-LiMgN as a function of the temperature. The heating rate is 5 °C/min.

Temperature °C

 NH_3 concentration as a function of time during isothermal dehydrogenation of the hydrogenated-LiMgN. The heating rate prior to isothermal holding is 5 °C/min.

Chemical vapor synthesis of LiMgN

Chemical vapor synthesis of LiMgN

Ultrafine LiMgN powders made by CVS process was successfully hydrogenated/dehydrogenated.

CVS produces LiMgN with more uniform sized particles than that of ball milling.

- To support MHCOE partners' efforts to regenerate AlH₃,
- Modified the reactor from last year by controlling the residence time of the gas phase to reduce particle size,
- The average size of the produced powder is < 50 nm.

TEM Micrograph

High energy high pressure mechanochemical synthesis of $7MgH_2$ -TiH₂

Mg_yTi_(1-y)H thin film was found to store hydrogen reversibly with better kinetic properties compared to that of MgH₂.

Reference: P. Vermeulen, R.A.H. Niessen, P.H.L. Notten, "Hydrogen storage in metastable MgyTi(1-y) thin films", Electrochem. Commun. 8 (2006) 27-32.

- Challenge: synthesize this compound in powder form and maintain reversibility
- High-energy high-pressure (HEHP) mechanochemical approach was employed: mixtures xMgH₂+yTiH₂ were high-energy milled under 2000 psi H₂ pressure.

HPHE Milling Reactor ³³

HEHP milled $7MgH_2$ -Ti H_2 - - significantly improved properties.

TGA curves of (A) milled $7MgH_2 - TiH_2$ (B) milled MgH_2

(C) as-received MgH_2 (D) temperature profile for (A), (B), (C).

Summary

- LiMgN found to be reversible at moderate temperatures, a promising material that will be investigated further.
- The reversible reaction of $\text{Li}_3\text{AlH}_6/3\text{LiNH}_2$ was found to depend strongly on heating rate due to competing reactions and relative product stabilities.
- The co-generation of NH₃ during dehydrogenation of hydrogenated LiMgN is quantified, preliminary data is now available.
- CVS is a proven approach for synthesizing nanosized or ultrafine powders for hydrogen storage applications.
- The high pressure high energy mechanochemical method is once again demonstrated as a unique approach for making non-equilibrium materials.

Where the Amides Stand

EXCELLENCE	Selected reversible hydrogen storage material systems							
Properties	MgH ₂ / Ni ^{nano}	NaAlH ₄	2LiH/ LiNH ₂	MgH ₂ / 2LiNH ₂	Li ₃ AlH ₆ /3LiNH ₂	2/3Li ₃ AlH ₆ /Mg(NH ₂) ₂	LiMgN	
Theoretical reversible wt% H ₂ (w/o catalyst)	7.6	5.6	10.4	5.6	7.3	6.5	8.2	
Volumetric density (g/L) (w/o catalyst)	112	92	101	71	99		107 (estimated)	
Demonstrated reversible wt% H ₂ (with catalyst)	6.5	~5	9.3	5.2	4.9 (PCT)	6.1 (TGA)	6.6 (PCT)	
Desorp. Temp (°C) (with catalyst)	150-250 (low P)	100-160	200~450 vacuum	100~250	160-300	100~240	160-240	
Adsorp. Temp (°C) (with catalyst)	150	120	170-255	100~200	200-300	200-300	160-300	
Isothermal Plateau Pressure, with catalyst, (Bar) (temp °C)	1 (280)	1 st step 1(~40) 10 (~90)	0.2 (230°C) 1.0 (255°C)	46 (200 °C)	1 (255°C) 60 (375°C)	TBD	1, and 20 (240 °C)	
Kinetics (with catalyst)	moderat e	Good	Good	Good	TBD	TBD	TBD 36	

FY 2008:

- Complete quantitative characterizations of the release of NH₃ during dehydrogenation from Li₃AlH₆/3LiNH₂, and LiMgN.
- Continue PCT studies of plateau pressures and the kinetics of hydrogenation and dehydrogenation for LiMgN and Li₃AlH₆/3LiNH₂,
- Continue to study the reaction mechanisms with XRD, FTIR, NMR.
- Begin catalyst studies to improve kinetic performance of materials
- ▶ Begin studies of $2\text{LiNH}_2 + \text{C} = \text{Li}_2\text{CN}_2 + 2\text{H}_2$ (rxn. predicted by Theory Group)
- Perform cycling studies of the LiMgN system
- \blacktriangleright Use CVS approach to make catalyzed nano Al for regeneration of AlH₃,
- Continue explore new materials using high pressure high energy ball milling

FY 2009:

- Continue to explore new materials, catalysts
- \blacktriangleright Explore techniques (thermal, chemical) to minimize NH₃ release
- Continue to study cycle stabilities

Acknowledgements

Yan Gao, Job Rijssenbeek, Grigorii Soloveichik, J.-C. Zhao and J.H. Her, P. Stephens (SUNY Stony Brook)

Craig Jensen, Godwin Severa, Jennifer Eliseo

Gilbert Brown, Joachim Schneibel

Zak Fang, Jun Lu, Brady Butler, H. Y. Sohn, Yongjoon Choi

Robert Bowman, Sonjong Hwang, Joe Reiter, Chul Kim,

Carnegie Mellon

David Sholl, S.V. Alapati, Karl Johnson

Dhanesh Chandra, Wen-Ming Chien

Don Anton and group.