

Reversible Hydrogen Storage Materials – Structure, Chemistry and

Electronic Structure

lan Robertson and Duane Johnson University of Illinois, Urbana-Champaign

7/12/08

Project ID # ST32

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date
 - March 2005
- Project end date
 - February 2010
- Percent complete 60%

Budget

- Total project funding
 - \$1 250 000 committed, no contractor share
- FY07: \$195K (received)
- FY08: \$260K (just received 5/8/08)

Barriers

- Issues addressed
 - A: Understanding chemical response to hydrogen
 - B: Understanding system weight and particle packing
 - C: Theory support to address critical issues blocking experimental progress.

Partners

- Project lead: Sandia National Laboratory & MHCoE
- HRL Laboratory, NIST
- Brookhaven National Laboratory
- Pittsburg and Georgia Tech

- The main focus of UIUC within the Metal Hydride Center of Excellence is
 - Advance the understanding of the microstructural and modeling characteristics of complex hydrides.
 - Provide feedback and knowledge to partners within MHCoE framework.
 - Provide more reliable theoretical methods to assess hydrogen-storage materials, including key issues affecting materials under study.
 - Help achievement of specific targets and milestones.

70 % complete

60 % complete

- <u>Task 1: Experimental investigation</u>
 <u>of MHCoE partner materials</u>
 - Investigate and model microstructural and chemical changes in hydrogen storage materials
- <u>Task 2: Incorporation and</u> <u>development of new models</u>
 - Development of new theoretical models and incorporation into MHCoE work

$Ca(BH_4)_2$ and intermediate phase

What is the intermediate phase?

Featureless (possibly amorphous) in low-dose TEM diffraction (connects with "CaB₆ + amorphous" XRD)

Can EELS identify intermediate Boron phase?

DFT-calculated empty *p*-states for CaB_6 and $Ca(BH_4)_2$.

• calculated with 1 eV Gaussian smear (EELS resolution).

• DFT suggests Boron K-edge EELS has structure and we could differentiate on nm-scale between boride and borohydride.

identification

hydrided sample rapidly.

Ca(BH₄)₂ + 3 wt % "A" + 3 wt % "B", after 1st cycle, in hydrided state

- .:. Beam damage in "low-dose" STEM mode may preclude distinguishing boride/borohydride using EELS.
- .: EELS is not viable to distinguish phase, regardless of DFT findings.

Catalyst additions in Ca(BH₄)₂

Ca(BH₄)₂ + 3 wt % "A" + 3 wt % "B", after 2^{nd} cycle, dehydrided state – Ru region ~ 100 nm

- Ca(BH₄)₂ shown reversible by SNL.
 Catalyst 3 wt% each "A" and "B".
- "A" may have catalytic action but is not dispersed
 - Not present in 50% of dehydrided $Ca(BH_4)_2$ particles.
 - Results for hydrided material similar.
 - "B" is well dispersed and present in all particles
 - -- with E. Rönnebro, SNL

- "A" additions in $Ca(BH_4)_2$ do not mix effectively.
- "A" may be catalytic but is not dispersed, while "B" is well dispersed. 8

Determining Catalyst Distributions

Ex: Ni dispersion in MgH₂/Si

Although down selected this system shows differing generic behavior of catalytic particles interacting with primary material.

- Ball milling used to reduce size and disperse Ni catalyst.
- Surface is not preferred by Ni.
 - Large fraction of Ni particles are embedded in the Mg matrix as viewed in *movie of* reconstruction.
 - Ni is like "A" in Ca(BH₄)₂ particles NOT homogeneously distributed.
 - EELS \rightarrow no atomic Ni elsewhere.
- Similar size distribution found (~30 nm) for 1 & 5 hr milling.

Tilt movie, showing Ni nodule orientation

 MgH_2 + 1/2 Si + 0.05 Ni, as milled for 1 hr

- Milling beyond 1 hr (30 nm) <u>not effective</u> for Ni reduction.
- Generally, must verify if catalytic material is dissolved.
- Tomography (CAT scan) permits 3D imaging and reconstructions.

More Catalyst Dispersal

- MgB₂ + 2MgH₂ + 2B + catalyst *not reversible*
 - Mg(BH₄)₂ is *not reversible* (some literature claims otherwise)
 - Chemical similarity to Ca(BH₄)₂ suggests intermediate can't be crossed, limiting storage.
- Difficult to predict efficacy of ballmilling in dispersing catalysts
 - $-Ca(BH_4)_2$
 - "B"disperses.
 - "A" does not disperse!
 - $-MgH_2 / MgB_2$
 - Nb_2O_5 and Ni do not disperse.
 - But, both Nb_2O_5 and Ni works.

Nb₂O₅ particulates

tomographic movie, showing

 $MgH_2 + MgB_2 + 2 B + 0.02 Nb_2O_5$, brightfield, after 1x hydrogen cycle.

Electron tomography indicates entire thickness of structure is ~200 nm

Big Nb₂O₅ particle ~ 300x300x60 nm

- Except for TiCl₃, milling *not effective* for dispersing catalysts.
- Reversibility affected by material, limited by intermediate phase.

Al*

Alane precursor

No enhancement of local Ti conc. at edge of Al particle. suggests bulk alloying, not surface

with BNL, J. Reilly

- Precursor material (before organic conversion to reversible material).
- EDS image suggests homogeneous alloy-like distribution.
 - -Surface distribution would show as enhanced distribution at particle edges
 - -Grain size ~ 160 nm

11 Alane precursor material appears as AI/Ti alloy before TEDA conversion.

Theory Drives MHCoE Materials Work

(A) Materials Discovery (structure, energetics, mechanisms)

Only interactions with MHCOE experiments shown; links to multiple other groups are also active

(B) Role of Contamination on Reaction Kinetics (Allendorf, Sholl, Johnsons)

-- Reported in ST33 (Pitt/GeorgiaTech)

(C) Improving AIH₃ Regeneration Approaches (Allendorf) -- reported in ST36 (SNL)

(D) Scaffold-nanoparticle interactions (Opalka) -- reported in STP16 (UTRC)

Accurate Reaction Enthalpies in Molecular Solids

Zarkevich and Johnson, Phys Rev. Lett. 100, 040602-4 (2008)

What was known before?

- *Rehydriding* phase is "hexagonal" structure, where *dehydriding* phase is melt.
- Theory (DFT + Phonons) found all hexagonal LiBH₄ structures unstable.
- ✓ Relevant high-T phase and/or anharmonic modes were <u>not included</u>.

- Provided accurate/general DFT-based method to predict enthalpies of destabilized reactions via mode counting of anharmonic modes.
 - ✓ Intramolecular harmonic modes always cancel in enthalpy differences!
 - Comparing predicted rehydriding phase with neutron data (with NIST, Udovic).
 - ✓ Not shown: XRD data for ortho and hex phases (with SNL, UMSL, Majzoub).

We are considering Mg and MgH₂ nanoparticles

- What is effect of size and C support on (de)adsorption properties?
- Can we elucidate MHCoE experimental finding?
- Do Mg particles rehydrogenate to stoichiometry, or something else?

Future Work - For FY08-09 -

- Explore nanostructure and nanoparticulate phases utilizing tomographic and spectroscopic analysis
 - Full analysis of Ca-borohydride phases and catalysts (SNL)
 - Finish analysis of Si destabilization and Ni catalysis on MgH₂/B₂ systems (HRL, SNL).
 - Study alane complexed with amines, if helpful to MHCoE partners.

Modeling complex hydride systems

- Quantify size and confinement effects on Mg/MgH₂ supported nanoparticles and their adsorption properties (w/ SNL, HRL).
- Apply reaction enthalpy prediction to systems of interest, and use these accurate predictions for van't Hoff plots (w/ GaTech).
- Help understand intermediate phase and reversibility (w/ SNL)
- Complete joint experiment and theory analysis on T-dependent XRD in LiBH₄. (w/ SNL, UMSL)

Project Summary

Relevance: We have demonstrated and used a framework for the microstructural analysis of complex hydrides

Approach: Characterization and theoretical tools are general and can be used with many materials above and beyond complex hydride materials.

Technical Accomplishments and Progress:

- Demonstrated ability to quantify efficacy of ball-milling and mixing for dispersion of catalyst.
- Detailed issues involving reversibility and starting phases there appears to be intermediate phase that controls reversible reactions.
- Developed new theoretical method for accurate prediction of reaction enthalpies in molecular solids, eliminating limitations.

Technology Transfer/Collaborations: Active interfacing with MHCoE partners, presentations, publications.

 We address critical issues in hydrogen storage materials synthesis and characterization brought to us by MHCoE partners.