

Development and Evaluation of Advanced Hydride Systems for Reversible Hydrogen Storage

Robert C. Bowman, Joseph W. Reiter, Son-Jong Hwang, & Brenda J. Hernandez

Jet Propulsion Laboratory

California Institute of Technology Pasadena, CA 91109-8099

June 12, 2008

Project ID # **ST34**

This presentation does not contain any proprietary or confidential information

Timeline

- Project start date: April, 2005
- Project end date: Dec., 2009
- 60 % complete

Budget

- Expected total project funding:
 - \$1.859M (DOE)
- Funding received in FY07
 \$400K (DOE)
- Funding received for FY08:
 - \$487.2K (DOE)

Barriers/System Targets

- A. System Weight and Volume
 - 2010 Targets: 6 wt.% & 45 gH/L
- D. Durability/Operability
 - 2010 Target: Life of 1000 cycles
- E. Charging/Discharging Rates
 - 2010 Target: Fill time of 3 min for 5 kg H_2
- P. Lack of Understanding of Hydrogen Physisorption and Chemisorption

Partners

- Participant in DOE MHCoE collaborations with partners in all five sub-group Projects [primarily with Caltech, NIST, GE Global, U. Hawaii, SNL, U. Utah, HRL, ORNL in FY-07 & FY-08]
- Washington U. and Caltech in support a DOE/BES H₂ Storage Project on solid state NMR studies of light element hydrides
- International: IFE (Norway), Tohoku U. (Japan), and AIST (Japan)

Develop and demonstrate light-metal hydride systems that meet or exceed the 2010/2015 DOE goals for on-board hydrogen storage

(1) Validation of storage properties and reversibility in light element hydrides

- Nanophase, destabilized hydrides based upon LiH, MgH₂, & LiBH₄
- Complex hydrides (e.g., amides/imides, borohydrides, & AIH₃-based hydrides)
- Samples provided by numerous MHCoE partners
- (2) Support developing lighter weight and thermally efficient hydride storage vessels.

FY07/FY08 Milestones:

- Evaluate behavior of destabilized MgH₂/LiBH₄ and Li-Sc-B-H systems against targets:
 - Reversibility
 - Kinetics
 - H₂ storage parameters (i.e., capacities, pressures, etc.)
- Characterize phases & chemical bonding via MAS-NMR (Caltech) to better understand basic chemisorption processes.
 - Li amides/imides/alanates
 - Borohydrides
 - Other hydrides provided by MHCoE partners
- Have postponed extended cycling tests to assess lifetime potential & durability since no destabilized/catalyzed hydrides was found with viable kinetics and reversibility to justify this commitment.

Perform Analysis and Characterization of Selected Hydrides to Explain Fundamental Processes:

- Volumetric measurements are used to determine hydrogen storage capacities and equilibrium pressures on destabilized nanophase and complex metal hydrides.
- Magic Angle Spinning Nuclear Magnetic Resonance (MAS-NMR) measurements being performed at Caltech Solid State NMR Facility (Dr. Son-Jong Hwang, lead) to assess the phase compositions and chemical bonding parameters.
- Examinations of structures by neutron scattering and diffraction, etc. in collaboration with MHCoE partner NIST.
- Using Raman spectroscopy measurements at Caltech to determine mechanisms of desorption processes.
- Interacting with MHCoE theory teams (i.e., U. Pittsburgh, GA Tech, and UMSL) on phases and destabilization behavior.

<u>Project A</u>: NMR Studies of H₂ Reactions with LiBH₄ in Carbon Aerogel (CA) Scaffolds</u>

Sample ID (HRL)	Chemical species	Processing Description
SO542-113-59	LiBH ₄ /CA	As-made in 25 nm carbon Aerogel (44.7 wt%)
SO542-113-59-used	LiBH ₄ /CA	Dehydrogenation at 400 °C
SO542-113-59-used-a	LiBH ₄ /CA	Rehydrogenation at 100 bar H ₂ , at 400 °C for 2 hours
HRL_SO542_1H ¹ H M	AS NMR	HRL_SO542_6Li_bd ⁶ Li MAS NMR
ω , =12 kHz	LiBH ₄ in carbon aerogel	$\omega_r = 12 \text{ kHz}$ LiBH ₄ in carbon aerogel
Rehydrogenation, wr=13.5 kHz Rehydrogenation	[H] 66	LiBH ₄
Dehydrogenation, d1 = 1000 s Dehydrogenation, d1=6s	27	Rehydrogenation
As-made 80 60 40 20	0 -20 -40 -60 -8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

- Two proton peaks in the as-made sample indicate distinct hydrogen species within the scaffold where the bulk LiBH₄ peak recovers while the other unknown peak (at -5 ppm) disappears after cycling.
- ⁶Li NMR spectrum for LiBH₄ on CA scaffold also suggest two different sites. The -3 ppm peak might be Li ions interacting with the surface. Re-hydrogenation gives the LiBH₄ phase without the -3 ppm peak.
- Partial reversibility of LiBH₄ was noted in ¹¹B spectra (not shown) some $B_{12}H_{12}^{2-}$ species & B formed.

METAL MAS-NMR Determined Phase Formation & PL WE REPORT OF EXCELLENCE Reversibility in Destabilized LiBH₄/MgH₂

" $MgH_2 + 2LiBH_4 = 2LiH + MgB_2 + 4H_2$ "

J. J. Vajo, et al., J. Phys. Chem. B 109 (2005) 3719

NMR shows residual amounts of $B_{12}H_{12}^{-2}$ along with LiBH₄: Incomplete reversibility under these cycling conditions.

7

Reaction down selected to "No-Go", except for Aerogel scaffolding studies (HRL).

JPL Objectives:

Support phase characterizations and bonding properties for new borohydrides [i.e., $Mg(BH_4)_2$, $Ca(BH_4)_2$, & LiSc(BH₄)₄] and their desorption processes via NMR measurements in collaboration with Caltech, SNL, GE Global, NIST, U. Hawaii.

Mg(BH₄)₂ Decomposition Pathway

NMR has been a key method to establish phase identification!

G. L. Soloveichik, et al., from manuscript by GE, JPL, & Caltech team (In Preparation)

WETAL Desorption Behavior of Borohydrides

(1)LiBH₄ \rightarrow LiH + B (amorphous) + 1.5H₂ \uparrow

(2) $M(BH_4)_n \rightarrow MH_x + n^{*}a-B^{*} + (2n-x/2)H_2\uparrow$

Boron phases NOT identifiable via X-ray/Neutron diffraction ("Amorphous") Solid state ¹¹B NMR identified the formation of $M_{2/n}B_{12}H_{12}$ phases as major intermediate species in hydrogen desorption reaction of various $M(BH_4)_n$ systems before further conversion to either MB_n or $B+MH_n$.

S.-J. Hwang, R. C. Bowman, Jr., J. W. Reiter, J. Rijssenbeek, G. L. Soloveichik, J.-C. Zhao, H. Kabbour, and C. C. Ahn, *J. Phys. Chem. C Letters* **112** (2008) 3164-3169.

In collaboration with Caltech and GE, LiBH₄, Mg(BH₄)₂, LiSc(BH₄)₄, Ca(AIH₄)₂-LiBH₄, studied by ¹¹B magic angle spinning (MAS) and cross-polarization magic angle spinning (CPMAS) after hydrogen desorption reactions at ~400 °C.

¹¹B CPMAS NMR spectra of desorbed materials (contact time = 0.05 ms). Ref. spectra: amorphous boron (a-B, note the scale change (1/100)), $K_2B_{10}H_{10}$, and $K_2B_{12}H_{12}$ added for comparison.

¹¹B solution NMR spectra after powders from desorption reactions were dissolved in H₂O. •Ref: K₂B₁₂H₁₂ compound dissolved in water. •[B₁₂H₁₂]⁻² unit present in the dissolved LiBH₄ and Mg(BH₄)₂ decomposition products. •J(B-H) = 125 Hz is confirming signature of B-H chemical bond in [B₁₂H₁₂¹⁻² unit

METAL Metathesis Synthesis of Borohydrides by JPL HYDRIDE CENTER OF Ball Milling (BM) Method

•Approach used by Y. Nakamori & S. Orimo to make $M(BH_4)_n \& M'M(BH_4)_n$ •Caltech: Anhydrous ScCl₃ and LiBH₄ (Aldrich, $\ge 90\%$) mixed with five 0.5" diameter SS balls in a Fritsch-pulverisette 6 planetary mill at 500 rpm for 3 hours

ratio	non-ionic route	ionic route
(ScCl ₃ +xLiBH ₄)		
1:3	$ScCl_3 + 3LiBH_4 = Sc(BH_4)_3 + 3LiCl.$	$ScCl_3 + 3LiBH_4 = \frac{3}{4} LiSc(BH_4)_4 + \frac{9}{4} LiCl + \frac{1}{4} ScCl_3.$
1:4	$ScCl_3 + 4LiBH_4 = Sc(BH_4)_3 + 3 LiCl_4 + LiBH_4$	$ScCl_3 + 4LiBH_4 = LiSc(BH_4)_4 + 3 LiCl.$
1:6	$ScCl_3 + 6LiBH_4 = Sc(BH_4)_3 + 3 LiCl_2 + 3LiBH_4$	$ScCl_3 + 6LiBH_4 = LiSc(BH_4)_4 + 3 LiCl + 2LiBH_4.$

MAS proton & ¹¹B spectra for ball milled mixtures of $ScCl_3/LiBH_4$ in the ratios 1:3, 1:4, and 11 1:6. Peak assignments were obtained from combined analyses of spectra for all nuclei.

First-Principles Calculations (E. Majzoub, UMSL) HYDRIDE EXCELLENCE indicate LiSc(BH₄)₄ is Stable Against Several Decomposition Routes

MAS and CPMAS spectra of ⁶Li and ⁴⁵Sc nuclei (also ¹¹B) for ScCl₃/LiBH₄ in the ratios 1:3, 1:4, and 1:6 show only LiSc(BH₄)₄ phase is formed. The "?" in ⁶Li and ⁴⁵Sc spectra are from a species without protons (i.e., probably Li₃ScCl₆).

•Static DFT calculations (no phonons) T=0K

All reaction equations +67 kJ/mol f.u. or greater (Consistent with NMR!)
BM method does NOT yield the less stable covalent Sc(BH₄)₃ phase

METAL Proj. C: NMR Evaluations of Amides/Imides

- Improve basic understanding of these materials
- Provide info on local chemical bonding during reaction
- Critically test and complement theoretical modeling of reaction mechanisms
- Assess reactions of amides/imides with alanates and borohydrides.

Example:
$$\frac{2}{3}Li_3AlH_6 + Mg(NH_2)_2 \longleftrightarrow \frac{2}{3}Al + Li_2Mg(NH)_2 + 3H_2$$
 6.5wt% H₂

⁶Li and ²⁷Al spectra indicated reversibility of the Li-Mg-Al-N-H samples from U. Utah.

J. Lu, Z. Z. Fang, H. Y. Sohn, R. C. Bowman Jr., and S-J. Hwang, J. Phys. Chem. C 111 (2007) 16686-16692.

Phase composition of UT3-2nd Sample

Components	Chemical shift	Rel. Quantity
	(ppm)	(%)
Al(M)	1640	5.2
AlH4 ⁻	98.8	8.1
Al_2O_3	74.1	3.8
AlH ₆ -3	-34.6	82.9

> Conversion to Li_3AIH_6 is more than 80% based from NMR results, which also indicate $LiAIH_4$ forming when pressure is 2500 psi.

 Subsequent studies showing impact of reaction conditions on product yield & formation of AIN phase
 @ heating rates < 5 K/min.

UT3-1st: Sample UT2 after rehydrogenation at 300 °C and 2000 psi UT3-2nd: Sample UT2 after rehydrogenation at 300 °C and 2500 psi

Prototype Hydride Beds Development and Life Testing

Objectives:

- Support development of more efficient hydride storage vessels to reduce storage system mass while retaining viable thermal management during H₂ absorption & desorption.
- Support system design and analyses using methods and analytical models established at JPL for sorption cryocooler hydride compressor beds.
- Evaluate the performance and robustness of candidate hydrides during many cycles of hydrogen absorption and desorption.

Deferred conducting cycling tests in FY-07/08 as $LiBH_4/MgH_2$ and other borohydride systems are not attractive due to slow kinetics & poor reversibility – will start cycling tests only if a viable candidate is identified from current screening assessments.

Accomplishments during FY07/08

•Completing Metal Hydride Storage Survey Report on status of the vessel design configurations and thermal analyses methodologies

≻Compiled from literature sources:

>Teaming with SRNL, UTRC, SNL, & DOE/EERE

>Progress reported at MS&T'07 Meeting, Detroit, MI (September 2007) and at DOE SSAWG Meeting, Washington DC (December 2007).

>Draft Report is planned to be completed in June 2008.

•Evaluate MH System thermal performance with analysis codes adapted from models previously developed for JPL sorption cryocoolers:

>Comparisons using generic bed design configurations:

Known hydrides (e.g., LaNi_{4.8}Sn_{0.2}, AB₂, and bcc-type alloys)

Light complex hydrides (e.g., alanates, etc.)

- >Assess feasibility of rapid absorption filling of "Hybrid HP-LT Hydride Vessels"
 - •Materials limited by heat transfer processes rather than reaction kinetics

•Compare behavior of various AB₅ and AB₂ alloys.

• Model Features:

- 1 node model
- 0 order comparison of hydrides

•Heat from bed charging is dependant on alloy enthalpy and hydrogen mass absorbed by the alloy

•Heat Absorbed by Alloy & Hydrogen depend on equilibrium temperature

–Van't Hoff Equation: P-C-T Curves not included

–Does not account for the sloped plateaus

Hybrid Tank Cooling Estimates

Abilities:

- Fast back of the envelope approach to calculating required cooling for charging a hydride bed at low pressures
- Calculates hydrogen charged into the alloy
- Calculates an equilibrium temperature
- Can do a 0-order comparison of alloys without taking specific geometry into account

Limitations:

- Does not include Pressure, Temperature, Concentration Curves
- Model code predicts hydrogen always absorbed by the alloy even at high temperatures (not realistic)
- Comparison between two alloys can be difficult due to limitations on pressure, temperature, and hydrogen concentration relationship

Some Parametric Results for a Ti-Based AB₂ Alloy

Need to adapt basic model for including Pressure, Temperature, Concentration relationships more completely.

JPL SINDA/FLUINT Model For Hydride Bed Charging

Sink Tank to Absorb from & Desorb to

Model Features:

- Over 7000 nodes for the hydride bed
- Detailed hydride & bed design properties
- P-C-T curves are calculated for each node

SINDA Model Hydride Bed

Sorbent Bed

Simulated temperature map shows gradients of ~50 K within bed

Note: Details are in a back-up slide

Planned Future Work (FY08/09)

Destabilized Reactions (Proj. A)

Continue reaction path investigations using NMR and Raman spectroscopies in the Li-Sc-B-H & LiBH₄-Ca(AlH₄)₂ systems to understand destabilization and reversibility mechanisms.
Extend studies of the LiBH₄ encapsulated in carbon Aerogel samples to determine chemical bonding of Li and protons with host surfaces via ¹³C and ⁶Li MAS-NMR and CP-MAS.
Apply NMR to identify species in destabilized complex hydride systems that lack definitive crystallographic features or have nanophase structures.

Complex Anionic Materials (Proj. B)

•Continue detailed volumetric & NMR assessments of $Ca(BH_4)_2$ phases (SNL), catalyzed borohydrides and alanates (SNL, U. Hawaii, IFE, and Tohoku U.), and NaMgH₃ (SRNL, NIST, and Washington U.)

•Evaluate the desorption and absorption (including potential catalysts) behavior of the polyborane Li₂B₁₂H₁₂ via NMR, Raman, and neutron vibrational spectroscopy (Caltech & NIST) then look for methods to enhance reversibility of polyborane reactions.

Amides/Imides (Proj. C)

Continue systematic ²⁷AI, ⁶Li, and ¹⁵N MAS-NMR studies of Li-Mg-AI-N-H phases (U. Utah).
 Investigate reaction mechanisms, kinetics, diffusion, and reversibility for these materials.

Evaluations of Alanes (Proj. D)

•Assess AlH₃ phases and decomposition processes (U. Hawaii, SRNL, BNL, and IFE)

Engineering Analysis & Design (Proj. E)

•Complete literature survey review on state-of-art hydride bed designs and performance.

•Model optimized H_2 absorption of high-pressure alloy hydride beds for rapid filling rates.

•Perform accelerated cycling study if a promising hydride material can be identified. 20

Approach: JPL supporting MHCoE goals/objectives in two areas

- 1. Systematic characterizations of phase formation and hydride reversibility using solid state NMR and volumetric measurements (Projects A, B, C, & D)
- 2. Development of improved hydride storage vessels and system engineering of high performance and long life materials (Project E)

Technical accomplishments and progress:

- Phase characterization, kinetics (i.e., diffusion behavior), & reversibility assessments via NMR in numerous systems (i.e., Li-Mg-B-H, Li-Sc-B-H, Li-B-Ca-Al-H, AlH₃, Li-Mg-Al-N-H) that complement and extend theoretical modeling and empirical discovery studies by other MHCoE partners.
- NMR analysis is identifying amorphous/nanophase species that are not distinguishable via x-ray diffraction or vibrational spectroscopy methods (i.e., established importance of B₁₂H₁₂ anions as key intermediates that limit performance of most borohydrides).
- Conducted a survey review of hydride storage vessel configurations and performance to assess state-of-art and provide explicit directions for improvements.
- MHCoE Collaborations: Caltech, U. Utah, SNL, GE Global, HRL, NIST, U. Hawaii, SRNL, & UTRC
- **Future Research:** (1) Continue intensive NMR/volumetric characterizations of promising candidates to improve their kinetics and reversibility; (2) Focus system engineering efforts onto modeling behavior during absorption and assessing degradation reactions during extended absorption/desorption cycling.