

Discovery and Development of Metal Hydrides for Reversible On-board Storage

Ewa Rönnebro and Eric Majzoub

Sandia National Laboratories

June 12, 2008

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Timeline

- Project started in March '05
- Project end ~ 2010
- Percent complete 60%

SNL R&D Budget

- \$1.96M in FY '07
- \$2.01M in FY '08

Note: Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Barriers

- A. System Weight & Volume, B. Cost, C. Efficiency, D. Durability
- E. Charge/discharge rates
- P. Lack of Understanding of Hydrogen
 Physisorption and Chemisorption

MHCoE Partners

Caltech, ORNL, JPL, UNR, Stanford, UIUC, Utah, UH, PITT, SRNL, HRL, CMU, GE, NIST, BNL, Internatix, UTRC, UNB

Collaborators

- V. Ozolins (UCLA), K. Yvon (U. Geneva),
- J. Herberg (LLNL), Y. Filinchuk (ESRF)
- C. Wolverton (Northwestern)

Technical POC (and MHCoE Director): Lennie Klebanoff

Core Technical Team

Ewa Rönnebro: *Proj. B POC, new materials* Eric Majzoub: *PEGS theory, experiments (Sandia/UMSL)* Mark Allendorf: *Theory, Theory Group Coordinator* Tony McDaniel: *High-throughput screening* Ethan Hecht: *High-throughput screening Mutlu Ulutagay-Kartin (since 12/07) Vitalie Stavila (since 1/08)*

Ph.D. Students

Godwin Severa: U. Hawai'i

Rebecca Newhouse, Leo Seballos: UC Santa Cruz

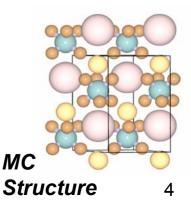
Other Key Contributors

Bob Bastasz, Tim Boyle, Andy Lutz, Bill Houf

Discovering New Complex Hydride Materials

Experimental

Established a synthesis route that combines high-energy milling followed by hot-sintering under high H₂-pressures:


 $\begin{array}{l} \textit{Metal + Binary Hydride + H}_2 \rightarrow \textit{Complex Hydride} \\ \textit{Boride + Binary Hydride + H}_2 \rightarrow \textit{Metal Borohydride} \\ \textit{(Normal run: P < 700bar, T < 450°C)} \end{array}$

New Start (7/1/2007): Improving kinetics, cycling life and desorption properties by incorporation of hydride materials in nanoframeworks. Teaming with UTRC (lead)

Theory

- The Prototype Electrostatic Ground State (PEGS) technique for structure determination and ΔH estimates
- Provide MHCoE partners with theoretical support -- provide Al-N bond energies for AlH₃ regeneration studies (BNL).

6 sample HP-autoclave

Status in March 2007:

- > Ca(BH₄)₂ partially reversible at 700bar and 400-450°C
- New compounds found in the ternary Ge and Mn systems, but H-content too low
- Theory predicted bialkali borohydrides

Focus during FY07/FY08:

- > Focus on re-hydriding $Ca(BH_4)_2$ at lower P and T
- Synthesis of PEGS-predicted bialkali borohydrides
- Re-hydriding low-temperature borohydrides utilizing our high-pressure capability. Teaming with Craig Jensen (UH) (in additional slides)

Motivation: In FY06, theory predicts $Ca(BH_4)_2$ has nearly ideal thermodynamics ($\Delta H \sim 40 \text{ kJ/mol } H_2$), 9.6 wt. %

Status 3/07:

Ozolins, Majzoub and Wolverton, in preparation

 $CaB_6 + 2CaH_2 + 10 H_2 \rightarrow 3Ca(BH_4)_2$ @700bar, 400°C, 48hours

Starting with anticipated decomposition products implies reversibility
 – Ewa Rönnebro and Eric Majzoub, J. Phys. Chem. B, <u>111</u> 12045 (2007)

This year:

What is the decomposition reaction mechanism?

Can Ca(BH₄)₂ be re-hydrided at lower pressures and temperatures?

 ✓ Partial reversibility observed during in situ synchrotron studies at Brookhaven by Job Rijssenbeek, Yan Gao, Ewa Rönnebro, J.-C. Zhao, unpublished data (2007)

✓ Partial reversibility of 3.8 wt% at 350°C and 90 bar reported from TGA by *J.H. Kim et al,* 6 *Scripta Materialia*, <u>58</u>, 481 (2008)

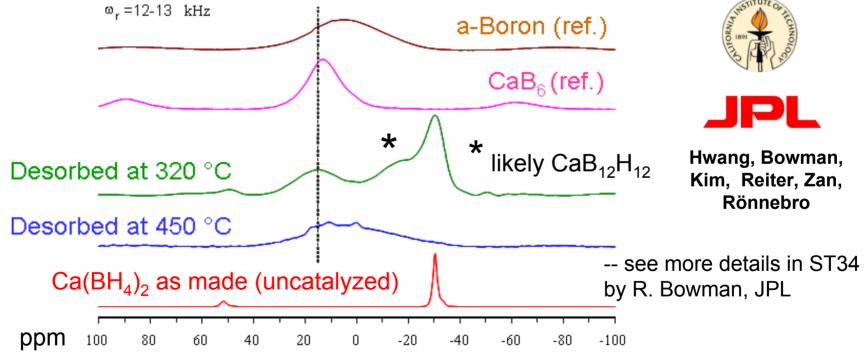
Identified Crystal Structures of α , α' , β Ca(BH₄)₂ Polymorphs Sandia National Laborato</sub>

In-situ synchrotron data from ESRF, $Ca(BH_4)_2$ made by desolvating an Aldrich sample

 $(\alpha, \beta) \longrightarrow (\alpha', \beta)$ desorption products 160 °C 350 °C α' α Ca BH₄ β-phase does *not* α '-phase forms above $\alpha \rightarrow \alpha'$ at ~160°C transform into α' , and 160°C. Decomposes at 350°C to release H₂ decomposes at 350°C to release H₂

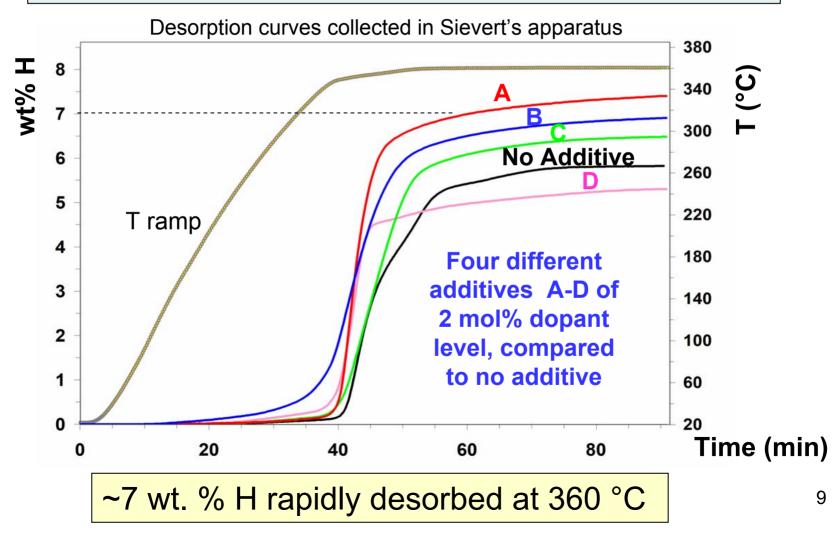
The polymorphs have different stability depending on temperature, and can be manipulated with additives

Also see ST37 D. Chandra, U. Nevada-Reno


Y. Filinchuk, E. Rönnebro, D. Chandra, submitted

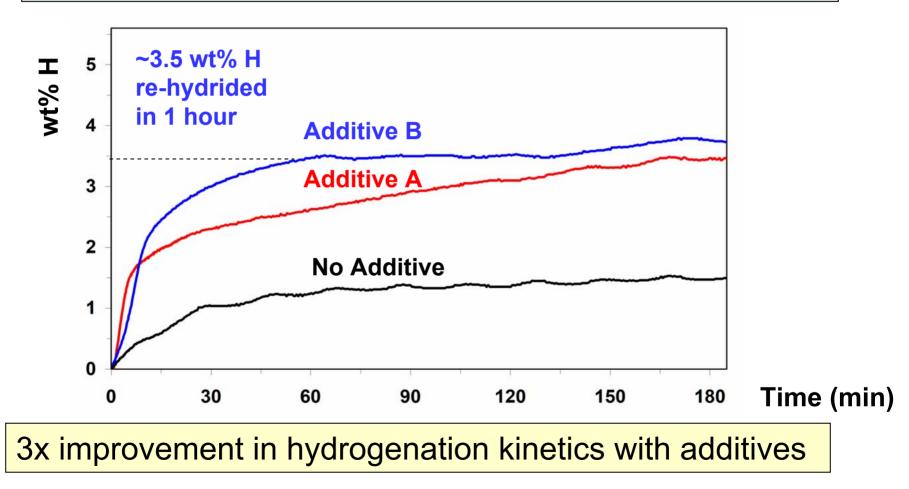
¹¹B MAS-NMR Reveals Ca(BH₄)₂ Decomposition Products

Desorption at 320 °C leads to CaB₆ and CaH₂
 Desorption at 450 °C leads to CaB₆ and probably a-B


Confirmed decomposition products, and found intermediate species

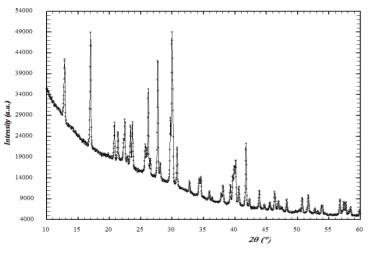
Investigated Effect of Additives on Desorption Kinetics of Ca(BH₄)₂

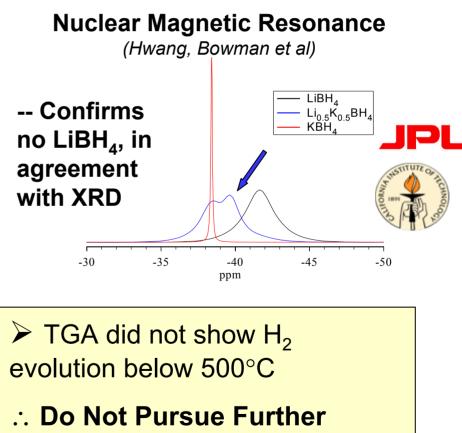
Additives change desorption kinetics and released H₂



Additives Aid Reversibility of Ca(BH₄)₂ at lower P and T

Re-hydrided at 350°C and 120 bar to ~4.5wt% (A) in 12 hours

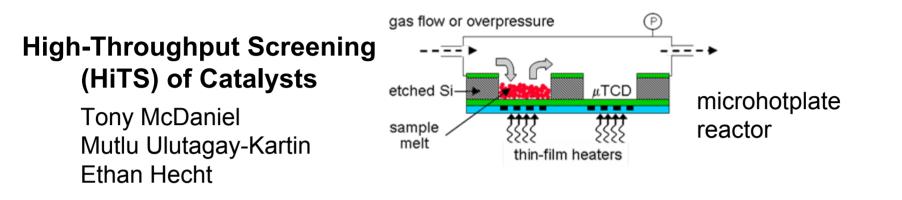

Ewa Rönnebro, Vitalie Stavila, Mutlu Ulutagay-Kartin, manuscript in progress


Motivation: Improving thermodynamics by changing cationic matrix

Ball Milled: $LiBH_4 + KBH_4 \rightarrow LiK(BH_4)_2$ (10.6 H wt.%)

> XRD shows new phase plus ~10% KBH₄, no LiBH₄

Stable orthorhombic structure calculated as low-energy structure



Synthesis of $LiK(BH_4)_2$ reported by P. Edwards et al, ISHE, Richmond, VA, 2007

Working to Establish High-Throughput Screening Capability

Completed Initial Proof of Principle Experiments using micro-hotplate reactors:

- \checkmark Demonstration of in-situ calorimetry, H₂ cycling diagnostics
- \checkmark Synthesis of NaAlH₄ from ball-milled AI + NaH precursors + H₂
- ✓ In-situ demonstration of NaAlH₄ catalysis by Ti
- ✓ Developed software architecture required for combinatorial work

Solved problems associated with hotplate reliability, but other hardware reliability issues emerged when examining higher T materials.

Not operational. DOE/MHCoE Coordinating Council reviewed options for materials screening, decided to pursue other methods. .: HiTS discontinued.

Experimental Milestones FY07&FY08

Month/year	Milestone or Go/No-Go decision
Mar-08 ✓	Milestone: Show reversibility of $Ca(BH_4)_2$ at lower pressures and temperatures. Accomplished.
Mar-08 X	Milestone: Acquire data on new materials and catalyst searches with HiTS methodology. Not accomplished, activity discontinued
Sep-08	Milestone: Complete Pressure-Composition-Temperature isotherms for $Ca(BH_4)_2$ to determine reaction enthalpy
Mar-09	Go/no-go on Ca(BH ₄) ₂ : Characterize and improve Ca(BH ₄) ₂ kinetics properties with additives (Teaming with JPL, Caltech, NIST) Milestone: Discover new borohydride related materials (Teaming with U. Ohio and U. Utah)
May-09	Milestone: Lowering of $Ca(BH_4)_2$ desorption temperature Go/no-go on AkTm(BH ₄) _x : Reversibility of alkali transition metal borohydrides (Teaming with U. Hawaii)
Sep-09	Milestone: Incorporation of hydride material in catalyzed nanoframeworks (Teaming with UTRC)

Status in March 2007:

- Validated PEGS method with known compounds
- Predicted stable bialkali borohydrides with PEGS

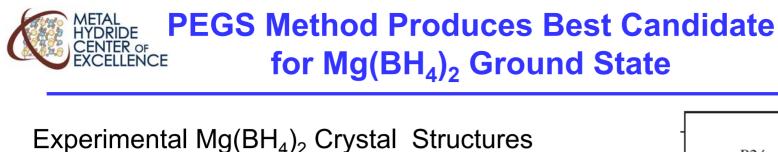
Focus during FY07/FY08:

- \succ Predicting structures and thermodynamics of Ca(BH₄)₂, NaK(BH₄)₂, and other promising compounds
- Quantitative evaluation of PEGS versus ICSD.
- Explore use of PEGS with alkali-transition metal borohydrides such as $LiSc(BH_{4})_{4}$ (teaming with JPL and Caltech)
- Use quantum chemical methods to calculate bond energies of alane complexes (in support of BNL AIH₃ regeneration studies)

PEGS* - Prototype Electrostatic Ground States

- Global optimization of electrostatic energy
- Potential energy smoothing
- Model anions as rigid units

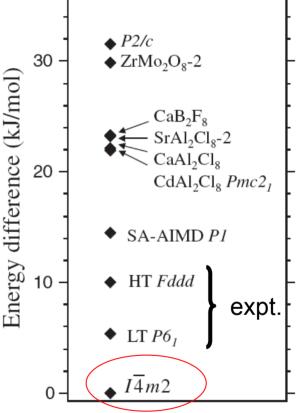
Database searching


- Few hits for some compounds
- A new material may have a new crystal structure

*Majzoub & Ozolins, Phys. Rev. B, 77, 104115 (2008)

First-principles density functional theory (DFT) is used for accurate energies and thermodynamics calculations

PEGS provides high-quality structures using the basic physical principles governing atomic interactions in complex hydrides


LT *P*6₁, 30 f.u./conv cell HT *Fddd*, 64 f.u./conv cell

Her et al, Acta Cryst, **<u>B63</u>**, 561 (2007)

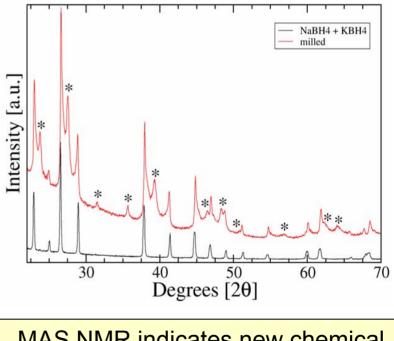
PEGS $I\bar{4}m2$

PEGS prediction LT I4m2
 4 f.u. primitive cell

V. Ozolins, E. H. Majzoub, C. Wolverton Phys. Rev. Lett. <u>100</u>, 135501 (2008)

➢ PEGS structure implies metastability of synthesized Mg(BH₄)₂
 ➢ Preferred decomp: Mg(BH₄)₂ → 1/6 MgB₁₂H₁₂ + 5/6 MgH₂ + 13/6 H₂
 (MgB₁₂H₁₂ also predicted with PEGS method)

Sandia National


PEGS Predicts Weakly MetastableNaK(BH4)2

PEGS provides *several* highsymmetry candidates that may be observed as polymorphs

Space Group		roup	E-E ₀ [meV/f.u.]	
1	.46	R3	+110	
1	48	$R\bar{3}$	+80	
1	.56	P3m1	+76	
1	.66	$R\bar{3}m$	0.0	
	NaK(BH ₄) ₂ predicted to be mildly unstable			
	(-3kJ/mol at T = 0K) No ZPE included!		o ZPE included!	

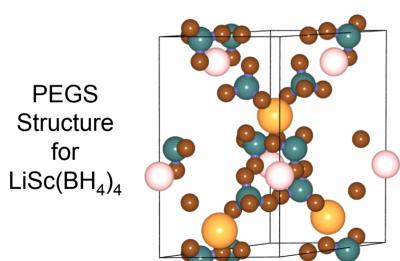
✓ NaK(BH₄)₂ synthesized
 ✓ XRD confirms predicted
 new phase (metastable)

MAS NMR indicates new chemical environment for Na and K.

: New compound formed

PEGS Finds High-Symmetry Candidate for LiSc(BH₄)₄

Ball milled: $ScCl_3 + 4LiBH_4 \rightarrow LiSc(BH_4)_4 + 3LiCl(14.5 H wt. \%)$


Rxn takes place, but:

- X-ray diffraction inconclusive on structure
- NMR indicates new phase
- ICSD search has very few structure candidates

Hwang, Bowman

PEGS structure stable against several

decomposition reactions:

$$LiSc(BH_4)_4 \xrightarrow{X} LiBH_4 + Sc(BH_4)_3$$
$$LiSc(BH_4)_4 \xrightarrow{X} LiBH_4 + ScH_2 + 3B + 5H_2$$

PEGS applicable to transition metal borohydrides with some covalent character

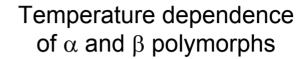
Temperature

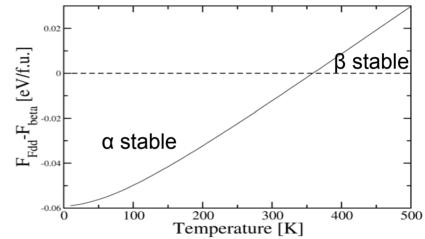
ß

α

(Fddd)

PEGS Ca(BH₄)₂ Search Explains Experimental Observations

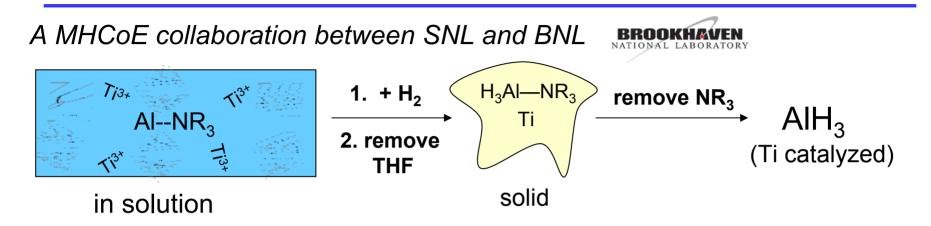

19


PEGS-structure of β -Ca(BH₄)₂ Confirmed by Rietveld refinements

Χ2

X1

Preliminary calculation shows α-to-β transition



- PEGS finds four high-symmetry structures for Ca(BH₄)₂
- All appear to be observed in X-ray diffraction new polymorphs!
- Rietveld refinements indicate we have found the correct beta phase structure

E. Majzoub and E. Rönnebro, manuscript submitted

Found Promising Adducts for Liquid-phase Alane Regeneration

We need accurate H₃AI—NR₃ complexation energies to optimally choose NR₃

Our solution: Bond Additivity Correction Methods

- Sandia in-house codes based on Gaussian 03 suite
- Corrects systematic errors in computed energies
- More accurate than DFT/B3LYP
- Chemical accuracy (± 1 2 kcal/mol for heats of formation)
- Provides temperature-dependent thermodynamics

Comparison of BAC methods with standard DFT used by chemists

Method	Avg. error	Test set (heats of formation)
BAC-MP4	1.25	93 species
BAC-G2	0.69	143 species
DFT/B3LYP	3.11	148 species

Pyridine, Pyrazine Are Promising Adducts

TEDA-bound AlH₃ is too stable – what other amines to try?

Computed AI-N complexation energies (BAC-MP2), kJ/mol at 298 K

1:1 Complexes	AI-N BDE	1:2 Complexes	AI-N BDE	
AIH ₃ .NMe ₃	147.6 (108.1)	AlH ₃ .2NMe ₃	217.9 (145.9)	
AIH ₃ .NEt ₃	118.6 (89.1)	AIH ₃ .2NEt ₃	158.7 (90.9)	
AIH ₃ .TEDA	156.3 (115.4)	AIH ₃ .2TEDA	233.8 (155.4)] a
AlH ₃ .Quinuclidine	159.9 (118.4)	AlH ₃ .2Quinuclidine	236.7 (156.0)	(N
AlH ₃ .pyridine	135.2 (109.2)	AIH ₃ .2pyridine	193.3 (142.1)	
AIH ₃ .pyrazine	125.3	(AIH ₃) ₂ .pyrazine	110.4]

BAC trends agree with DFT (McGready et al.)

Red: BAC-MP2; Blue: DFT/B3LYP (McGready et al.)

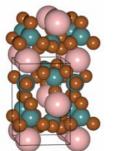
2:1 complexes (e.g. (AIH₃)₂ • pyrazine): significantly less stable
 1:2 decomposition kinetics determined by AI-N bond in 1:1 complex

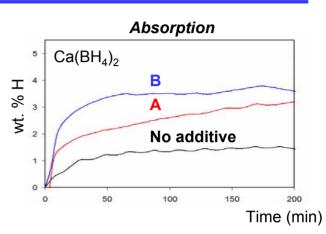
Computations of AI-O BDE are underway

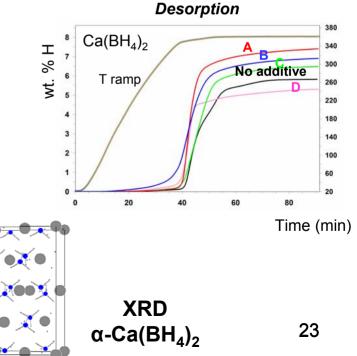
Theory Milestones FY07&FY08

Month/year	Milestone or Go/No-Go decision: PEGS Theory
Apr-08 ✓	Milestone: Complete $Ca(BH_4)_2$ polymorph structure determination and first-principles-calculated reaction pathways. Accomplished
Sep-08	Milestone: Begin extension of PEGS method to nanoparticle hydrides
Mar-09	Go/no-go: Search for <i>mixed-anion</i> materials with large wt. % H
May-09	Go/no-go: Determine accuracy of PEGS method in nanoparticle energetics

Month/year	Milestone or Go/No-Go decision: Al-Adduct Theory
May-08 ✓	Milestone: Complete BAC calculations of alane-amine complexes. Accomplished
Sep-08	Milestone: Complete BAC calculations on alane-adduct complexes
Dec-08	Go/no-go: Model reactions of alane-amine surface interactions?
May-09	Milestone: Complete calculations on alanate-amine complexes
Sep-09	Milestone: Complete calculations on alanate-ether adducts

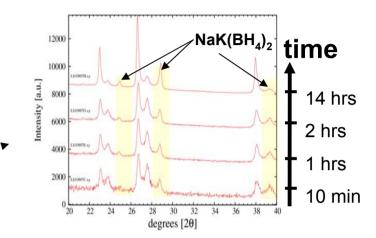

Summary FY2008 Accomplishments

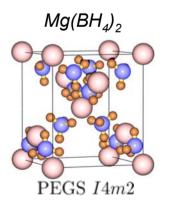


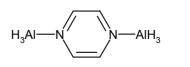

Calcium Borohydride

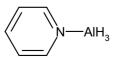
- Showed partial reversibility at lower P and T: 100 bar and 350°C
- Showed drastic improvement in kinetics by choosing right additives
- Elucidated crystal structures of polymorphs using a combined theoretical/experimental approach, i.e. the PEGS-method and the Rietveld-method

PEGS structure for β -Ca(BH₄)₂




Summary FY2008 Accomplishments Cont'd


New Hydrogen Storage Materials


- Synthesized LiK(BH₄)₂, do not pursue further due to poor thermodynamics
- Synthesized PEGS-predicted NaK(BH₄)₂, do not pursue further due to instability
- Re-hydrided high-capacity material by teaming with U. Hawai'i on low-temperature borohydrides, utilizing our HP-station
- Predicted lowest-energy structure and decomposition products for Mg(BH₄)₂
- Showed that PEGS can provide transition metal borohydride structures
- Found promising adducts for liquid-phase AIH₃ regeneration based on bond-energy calculations

24

(AIH₃)₂•pyrazine

AlH₃• pyridine

Borohydrides

- > Determine ΔH , improve kinetics and cycle life of Ca(BH₄)₂
- Synthesize borohydrides predicted by PEGS method
- Discover new borohydride related materials (teaming with U. Hawai'i, Ohio State and U. Utah)

Nano-structured hydrides and catalyzed nanoframeworks

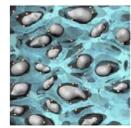
- > Incorporate $Ca(BH_4)_2$ into catalyzed nanoframeworks (with UTRC)
- Investigate kinetic improvements
- Synthesis of nanostructured complex hydrides

Theory

- > Predict new materials with a variety of complex anions (N_nH_n , B_nH_n , etc.)
- > Resolve xtal structures of polymorphic hydrides (e.g. $Mg(BH_4)_2$, $Ca(BH_4)_2$)
- Continue Al-adduct theoretical studies to optimize AlH₃ regeneration

Borohydrides

Synthesize borohydride-related materials and explore their reversibility based on theoretical predictions. Continue optimizing performance of calcium borohydride and other materials


Theory

Theory will continue guiding experiment and predict stable structures in promising systems, continue coordination of MHCoE Theory Group

Nanoengineering

- Incorporation of hydride materials in catalyzed nanoframeworks
- Explore possibilities to design alternative nanostructured metal hydrides to improve hydrogen storage properties

hydride incorporation into nanoframeworks

