

Effect of Trace Elements on Long-Term Cycling and Aging Properties of Complex Metal Hydrides

Dhanesh Chandra

University of Nevada, Reno (UNR)

June 12, 2008

ST 37

This presentation does not contain any proprietary or confidential information

Overview

Timeline

Project start date – FY05 Project end date – FY10

Percent complete – ~60%

Budget

- Total project funding (5yrs.) : \$ 1.5 M (Requested)
- DOE share (5yrs.) : \$ 1.2 M
- Contractor share (5yrs.) : \$ 301 K

Funding received in FY07 : \$ 520 K (Includes funding for major equipment)

Funding received in FY08 : \$ 250 K

Barriers Addressed

- The effect of trace impurities on materials
- Poor mechanistic understanding of some materials
- Lack of characterization of material volatilization

Partners

- SNL Ewa Rönnebro
- GE Dr. J.C. Zhao (Now at Ohio State)
- ESRF, Grenoble , France Yaroslav Filinchuk
- Univ. of Utah, Dr. Z. Fang

Objectives

Overall	UNR's Focus Areas:		
Objective	► I. The primary objective of the UNR Project is to determine the effects of		
	<u>gaseous trace impurities</u> such as O_2 , CO, H_2O , CH ₄ etc. in H_2 on long-term behavior of the complex hydrides/precursors by pressure cycling and/or		
	thermal aging with impure H_2 .		
	II. Secondary related objectives: (a) Vaporization behavior of hydrides		
	(b) Crystal Structure studies		
2006	Constructed high pressure (up to 100 bar) cycling equipment.		
	Performed hydrogen cycling studies on amide-imide and mixed alanates.		
	Vapor pressure behavior of Li ₃ N and Mg(BH ₄) ₂ initiated.		
	> HP DSC experiments, in-situ neutron, and x-ray diffraction studies		
2007	Thermodynamic Studies:		
(May, 15 2007- April 1, 2008)	A. <u>Extrinsic Hydrogen Charging/Discharging effects</u> : Determined the effects of gaseous impurities in hydrogen on Li ₂ NH-LiNH ₂ and other systems.		
	<i>B. <u>Vaporization Thermodynamics</u>:</i> Worked on Mg Borohydride, and identified vapor species at moderate temperatures.		
	Crystal Structure Studies:		
	In-situ phase transformation studies on Ca(BH ₄) ₂		

Amide-Alanates are important because of their theoretical ~7 wt.% hydrogen storage capacity

<u>Significance of Mg(BH₄)₂ and CaBH₄)₂ Studies</u>

- 1. Mg(BH₄)₂ \rightarrow ~15 wt.% H₂ capacity with Δ H ~ 53 kJ/mol
- **2.** $Ca(BH_4)_2 \rightarrow Potential candidate for hydrogen storage candidate$
- 3. $Mg(BH_4)_2$ and $Ca(BH_4)_2 \rightarrow Vapor$ Pressures are important to understand vaporization during evacuation cycle of the hydriding/dehydriding.

Pressure Cycling Li-N-H

*Weidner, E., D.K. Ross, et al. *Chemical Physics Letters*, 2007. _5-444(1-3): p. 76-79.

Objective

To assess Loss in Hydrogen Capacity after Pr. cycling Nominally for ~100 cycles

Experiments

- $Li_2NH \leftrightarrow LiNH_2$ Pressure Cycled ~ 20 atm/vacuum at 225°C. Top
 - left
- **Absorption/desorption lsotherms** (up to ~12 bar) using the Sieverts apparatus

Summary

> Effect of 100 ppm CH₄ in H_2 : About 0.7 wt.% H₂ capacity was lost after 100 pressure cycles. There was virtually no change in kinetic behavior

Results:

► <u>Thermodynamics</u>: After ~500 Pressure cycles at 225°C → remaining Hydrogen capacity is 1.5wt.% (with O₂ additions) and 2.7 wt.% out of ~5.6 wt.% with H₂O (total reversible capacity).

<u>Cycling of Li₂NH up LiNH₂ with Industrial hydrogen</u> Water ~32 ppm, O₂~10ppm showed ~2.6% hydrogen loss (500 cycles under similar cycling conditions) Loss in Capacity due to formation Li₂O, and LiH and LiOH

Importance: Presence of water in H₂ is expected to have more impact on the loss of hydrogen capacity but it appears that there is greater loss observed when the experiments were conducted with O₂ impurity in H₂

SUMMARY PLOTS of Isotherms Before and After Li₂NH-LiNH₂ Cycling

Cycling and Sievert's apparatus Glove Box

Dual Combined 100 bar H_a

Results: Pressure Cycling: **Significantly more** losses with O₂ and H₂O impurities. (Desorption cycles not shown for clarity) Thermal aging: 100 ppm CO with $H_2 \rightarrow very$ little loss in Η, capacity for the imideamide system (results not shown) XRD results show that there is residual Li₂NH along with Li₂O (major phases) LiH and phase.

HYDRIDE CENTER OF Kinetic Losses From Cycling in Industrial Hydrogen

<u>*Please note</u>: Note that cycling $Li_2NH \leftrightarrow LiNH_2$ in Industrial hydrogen Water ~32 ppm, O_2 ~10ppm and others showed ~3.2% (out of ~4.4%) hydrogen loss after 1100 cycles under similar cycling conditions

Hydriding reaction:		
Cycles	k (1/s)	
1	0.0075	
163	0.0064	
502	0.0035	
1100	0.00075	

Pressure Measurements

Torsion effusion system, available at UNR used to determine total equilibrium pressure we use the following Eq.: ('K'=Fiber Constant)

Typical Pr. Temp. and Sample Size:

- Turbo Pump vacuum (<10⁻⁵ Torrs)
- ~ 1 gram
- Temperature capability: -20°C to 600-700°C

. Tungsten Knudsen Cells Used

Molecular Weight Measurements of Vapors

Determined by rate of weight loss (TGA)

Pressure Equation

 $P_{T} = \frac{K(2\theta)}{(a_{1}f_{1}d_{1}) + (a_{2}f_{2}d_{2})}$

> Disproportionation equations (below) in the vapor phase determined by equating the experimental M_{AVG} to the theoretical Mol. Wt. of the effusing gas species:

$$M_{\text{AVG}} = \frac{2\pi RT}{(2K)^2} \cdot \left(\frac{\binom{dw}{dt}}{\theta}\right)^2 \left[\frac{(a_1f_1d_1) + (a_2f_2d_2)}{(a_1c_1) + (a_2c_2)}\right]^2 = \sum_{i=1}^n \left[m_i M_i^{1/2}\right]^{-2}$$

Vapor Pressures of $Mg(BH_4)_2$, Mg, and MgH_2

Gibbs Energies of Vaporization of $Mg(BH_{4})_{2}$ and others

Results:

- Vapor pressures of Mg (s) \rightarrow Mg (g), and decomposition of MgH₂ to Mg metal and H₂
- **Gibbs energy calculation of** vaporization are listed in **Figure**
- At 225°C: P_{μ_2} = 8.8x10⁻⁶ atm, and $P_{Mq(BH4)2} = 2.03 \times 10^{-7}$ atm
- No detrimental cations appear to be effusing out – stable
- Above 508 K (233.1°C) the **∆G° becomes negative and** vaporization does starts.

$$B_{2}H_{6}(g) \rightarrow 2B(solid) + 3H_{2}(g) \qquad B_{2}H_{6}(g) \rightarrow 2B(gas) + 3H_{2}(g)$$

@ 298.15 K, 1 Bar ∆G_{RXN}= - 87.6 kJ/mol (Possible)

release of Borane gas)

CENTER OF CELLENCE

These studies were performed using High resolution and high temperature synchrotron x-ray diffraction at ESRF, Grenoble to understand the phase stability of $Ca(BH_4)_2$

Synchrotron Data from the Ca(BH₄)₂ Specimen

Summary

- > The sample contains 87% α -Ca(BH₄)₂ and 13% β -Ca(BH₄)₂ phases at room temperature.
- > Phase transition from $\alpha \rightarrow \alpha'$ occurred at 222°C (second order transformation)
- **>** Then $\alpha' \rightarrow \beta$ occurred at 297°C
- Manuscript prepared: "Crystal Structures and Phase Transformations in Ca(BH₄)₂, Y. Filinchuck, E. Ronnebro and D. Chandra, 2008.

Variation of the Unit cell Parameters of α and α '-Ca(BH₄)₂ as a Function of Temperature

Temp (K)

Summary

- No change to lattice parameters of α phase until ~165°C,
- Unit cell volume per formula unit of the α and α' phases shows increases as temperature ramps up.
- The volume of the unit cell of β phase shows linear increase during heating
- Small amount of β phase are always present at the start of the experiment mixed with the α- phase

Volume of the Ca(BH₄)₂/ formula unit in the α , , α ' and β -polymorphs as a function of temperature

-15-

New Crystal Structures α , α ' and β phases of Ca(BH₄)₂

Structure determination in final Stages in Collaboration with ESRF (Grenoble) and Sandia National Laboratory

Summary

- New phase transitions were observed and crystal structures determined as shown above.
- Crystal Structures were determined in collaboration with Dr. Yaroslav Filinchuk (ESRF-Grenoble) and Dr. Ewa Ronnebro (Sandia National Laboratory).

Future Work on Complex Hydrides (FY '08 and Beyond)

- > 1. Continue Work on Effect of Impurities on Specific Contaminants
 - Pressure Cycling on mixed Mg-Li based complex hydrides
 - New 8 station combined cycling/Sievert's hydriding apparatus
 - **o** Testing of hydrides developed by MHCoE partners
- > 2. In-Situ Neutron and X-ray Diffraction Studies on Hydriding/Dehydriding
 - Studies on Borohydride using X-ray and neutron diffraction
- > 3. Vapor Pressure Studies on LiBH₄ and other Borohydrides
 - Thermodynamics of vaporization of LiBH₄ and others
- > 4. Phase Diagram Determination of Mixed Complex Hydrides
 - o Develop experimental non-equilibrium/equilibrium phase diagrams
 - o CALPHAD modeling at UNR
- > 5. High Pressure Differential Scanning Calorimetric Research
 - Dynamic heating behavior at up to ~ 50 bar hydrogen
- 6. Hydrogen Lattice Dynamics Studies on Complex Hydrides- Prof. Cantelli, Univ. of Rome - IPHE Proposal
 - "Hydrogen Dynamics, Lattice interactions, and Atomic-scale Structure of Complex/Chemical Hydrides"
 - o Collaboration between Cantelli-Rome, Italy and Chandra-Jensen, USA
- > 7. IEA/IPHE Collaborative Studies at Uni. of Geneva and CRNS (France)
 - Proposal to study defect structures in the complex hydrides such as Li-Al hydrides, Mg-Li amides, and others
 -17-

Summary of Technical Accomplishments

Imide-Amide (Li₂NH-LiNH₂) Impurity Effects (UNR Sample)

- > Studies on trace amounts of impurity gases (100 ppm) such as O_2 , CO, H_2O , and CH_4 , in H_2 and industrial hydrogen, up to ~1100 cycles.
- \succ O₂ was most detrimental to the performance of amide-imide hydrides
- The kinetic analyses showed one order of magnitude change of the rate constants; from cycle 1 at 7.5x10⁻³/sec to 7.5x10⁻⁴/sec. after 1100 cycles.

Vapor Pressure Measurement of Mg(BH₄)₂ (Sample from GE)

- > No significant vaporization of Mg(BH₄)₂. Below 233°C not possible to record any data.
- > Above 233°C the Δ G° becomes negative and vaporization starts. Δ G° of Mg(BH₄) was determined.
- > Partial Pressures: P_{H2} = 8.8x10⁻⁶ atm, $P_{Mg(BH4)2}$ = 2.03x10⁻⁷ atm, at 225°C
- > Mg(BH₄)₂ (s) →Mg(BH₄)₂ (g) (Δ H= 93.4 kJ/mol) (only ~2% of the vaporization).
- ➤ The majority of the vaporization was due to disproportionation of Mg(BH₄)₂ → Mg(s)+B(s)+4H₂(g), △H= 44.82 kJ/mol (~98%)

Structure and Phase Transformations in Ca(BH₄)₂ (UNR-SNL Sample)

- > in-situ synchrotron data showed two polymorphs of α -Ca(BH₄)₂ and a small amount of β -phase formed upon removal of solvent from Ca(BH₄)₂·2THF.
- > A second order $\alpha \rightarrow \alpha'$ phase transition occurred at 222°C (confirmed by DSC).
- > Another phase transition, $\alpha' \rightarrow \beta$ phase upon heating above 297°C and decomposes at 382°C into unknown products which according to TGA is associated with a weight loss, likely due to release of hydrogen.