

Aluminum Hydride Regeneration

Jason Graetz, J. Wegrzyn, J. Reilly, J. Johnson, Y. Celebi and WM Zhou

Brookhaven National Laboratory

Project ID #ST 39

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: FY05
- Project end date: FY10
- 60 % complete

Budget

- Expected total project funding: – \$4.00M (DOE)
- Funding received in FY07
 - \$960K (DOE)
- Funding for FY08

 -\$1.125M (DOE)

Barriers

MYPP Section 3.3.4.2.1 On-Board

- **Storage Barriers**
- A. Weight & Volume
- B. Cost
- C. Efficiency
- D. Durability/Operability
- E. Charge/Discharge Rates
- **R.** Regeneration Processes

Partners and Collaborators

- Project D (aluminum hydride) Lead
 UH-UNB, ORNL, SRNL, SNL
- Other collaborations: JPL, UIUC, ANL
- Chemical Hydride Center
- International Energy Agency (IEA)

Objective: Develop a material that supports the 2010 DOE technical performance targets using Aluminum Hydride (AIH₃), by fully elucidating the nature of hydrogen desorption from AIH_3 and developing an efficient regeneration method.

- 1. Develop new routes to prepare pure crystalline α -AlH₃ from Al (spent fuel) with minimal energy cost
- 2. Assist the engineering design for an off-board system based on AIH_3

Challenge: AlH₃ thermodynamically unstable below 7 kbar (300K)

- In an AIH₃ system H₂ evolution controlled by T (rather than P) so the ability to tune decomposition kinetics will be critical - Various routes exist to adjust kinetics (e.g. size, coatings and catalysts)
- 2. The key issue is regeneration (hydrogenation of Al metal), and multiple regeneration pathways are being investigated

Alane (AIH₃) harvesting

Step I: Form molecular AIH_3 by hydrogenating Ti-catalyzed AI and harvest/stabilize AIH_3 as a Lewis Acid/Base adduct

Step II: Remove stabilizing species and recover AIH₃

stabilizer = amine (TEDA), alkali hydride (LiH), solvent (THF)

 Ti catalyzed AI (AI*) prepared by first making AIH₃ with TiCl₃ in ether and then decomposing the ether adduct

 $3LiAlH_4 + AlCl_3 + 0.08TiCl_3 \xrightarrow{Et_2O} 3.24LiCl + 4AlH_3 \cdot Et_2O + 0.08Ti$

$4AlH_3 \bullet Et_2O + 0.08Ti \quad \frac{100 \circ C}{2 hrs} \quad 4Al + 0.08Ti$

- Typical catalyst concentration was 2 mol % Ti
 - Recent results suggest reactions will work with much lower catalyst concentration
- Reactions performed in solvent medium: THF, Et₂O
 - Solvent acts as electron donor and helps stabilize AIH_x

Ti Uniformly Distributed in Al

TEM studies of Ti catalyzed AI at UIUC (Ian Robertson and Dennis Graham)

 Ti well-dispersed throughout AI matrix - no enhancement of Ti at particle edge suggests Ti not just on surface but distributed through the bulk

8

AIH₃ TEDA Reversibly Cycles H₂

Proposed reaction: $AI + TEDA + 3/2H_2 \rightarrow AIH_3$ TEDA

- Hydrogenation reaction does not occur without Ti catalyst
- AIH₃-TEDA is reversible in other solvents (THF, dodecane)
- Reversible capacity ~100% of theoretical (2.1 wt%)

Accurate AI-N bond dissociation energies (BDE's) needed to guide optimal choice of adduct for AIH₃ regeneration ...

- Employ "Bond Additivity Correction" to provide accurate Al-N bond dissociation energies (BDE's)
- BAC values differ from DFT predictions (S. McGrady (UNB) shown in back-up slides), but similar trends
- AIH₃-TEDA exhibits strong AI-N Bond while AIH₃-NEt₃ has a weak AI-N bond
- Pyridine and pyrazine are promising amines with moderate AI-N energies
- -1:2 complexes (e.g. (AIH₃)-2pyrazine) are significantly less stable
- Future efforts look at AI-O bond energies

Results from gas-phase calculations:	
1:1 Complexes	AI-N BDE* (kJ/mole)
AIH ₃ NH ₃	142.7
AIH ₃ NMe ₃	147.6
AIH ₃ NEt ₃	118.6
AIH ₃ TEDA	156.3
AIH ₃ Quinuclidine	159.9
AIH ₃ pyridine	135.2
AlH ₃ pyrazine	125.3
AIH ₃ 2TEDA	233.8
AIH ₃ 2NEt ₃	158.7

BDE = Energy to dissociate to AlH₃+ligands BAC-MP2 M. Allendorf (Sandia)

Other alane compounds may be useful intermediates to forming AlH₃ Can we make LiAlH₄ from Al*, LiH (stabilizer) and H₂ in THF?

YES! Hydrogenation occurred at low pressure (<13 bar) and low temp (300K) - no hydrogenation without Ti

Reaction is reversible (~90%) at moderate pressure and temperature

- > If we can extract THF we have a simple regen. route for $LiAIH_4$
- > We may be able to use LiAlH₄ as step to α -AlH₃

AlH₃ recovered from AlH₃·Et₂O by heating 70°C under vacuum

XRD plot demonstrates AIH₃ can be recovered from alane-amines

• XRD confirms Ti-catalyzed LiAlH₄ recovered from LiAlH₄·THF

Multi-Step Pathways

Direct two-step approach is preferred, but a multi-step scheme may have lowest overall energy cost

Overall reaction: AI + $3/2H_2 \rightarrow AIH_3$

Goal: Develop and demonstrate a storage system that meets DOE targets using aluminum hydride as hydrogen fuel source.

Four major accomplishments:

- (1) Developed a simple method to prepare Ti-catalyzed AI for AI hydrogenation reactions, Ti uniformity confirmed by TEM/EDS
- (2) Demonstrated reversible hydrogenation of spent AI* and TEDA to form AIH₃-TEDA in solution at low P and T
- (3) Developed preliminary method based on TEA and Et_2O to separate stabilized alanes and recover α -AlH₃
- (4) Demonstrated reversible hydrogenation of spent AI* and LiH to form LiAIH₄ in solution at low P and T

FY08: Demonstration of complete regeneration cycle Identify new pathways to α -AIH₃

- direct formation of alane adducts (pyridine, pyrazine, ethers, ...)
- recovering hydride from alane-adducts, determine energy penalty

Continue effort on two existing pathways:

 $\mathsf{AI} + \mathsf{H}_2 \rightarrow \mathsf{AIH}_3\text{-}\mathsf{TMA} \rightarrow \mathsf{AIH}_3\text{-}\mathsf{TEA} \rightarrow \mathsf{AIH}_3$

 $\mathsf{AI} + \mathsf{H}_2 + \mathsf{LiH} \rightarrow \mathsf{LiAIH}_4 \rightarrow \mathsf{AIH}_3 \text{-}\mathsf{TEA} \rightarrow \mathsf{AIH}_3$

Go/no-go on regeneration using organometallic approach **Down select** (FY08) type(s) of alane adduct(s) for further study

FY09: Regenerate AlH₃ with *E* penalty ≤73 kJ/H₂ (30% of fuel energy) Work with partners to determine mass balance & energy cost Begin investigation of alane slurries and liquid carriers Work with group(s) in Engineering CoE on alane system