Quantifying & Addressing the DOE Material Reactivity Requirements with Analysis & Testing of Hydrogen Storage Materials & Systems

D. Mosher, J. Khalil, X. Tang, B. Laube and R. Brown

United Technologies Research Center

J. Senecal and Kemi Sorinmade

Kidde-Fenwal

DOE Hydrogen Program Annual Peer Review Arlington, VA

June 13, 2008

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Official Start: June 2007
- Contract Signed: August 2007
- End: May 2010
- Percent complete: 25%

Budget

- \$1.34M Total Program
 - \$1.07M DOE
 - \$0.27M UTRC
- FY07: \$60k
- FY08: \$410k

Barriers

- F. Codes & Standards
- A. System Weight & Volume
- Target
 - EH&S: "Meets or exceeds applicable standards"

Partners & Collaborators

- Project
- UTRC
- Kidde-Fenwal

DOE Core Team

- Savannah River NL
- Sandia NL

IEA / IPHE Additional Team Members

- FZK (Germany)
- AIST (Japan)
- UQTR (Canada)

Canadian SDTC Project

- HSM, Inc. led alane system development
- UTRC alane system reactivity evaluation

Additional Collaborations

- DOE refueling station risk assessment
- IEA Task 19
- NFPA Hydrogen Technology Committee, C&S activities

151

DEVELOPMENT

TECHNOLOGY CANADA"

R

Broad Objectives

- Quantify the DOE On-Board Storage Safety Target: "Meets or exceeds applicable standards."
- Evaluate reactivity of key materials under development in the materials Centers of Excellence.
- Establish generalized and specific risk analyses between reaction characteristics and satisfaction of acceptance criteria.
- Reduce reactivity consequences of candidate materials and systems through development of mitigation methods.
- Determine the trade-offs between performance and residual risk.
- Support risk informed choices for Codes & Standards activities.

Approach: Tasks & Materials

Underlined items are covered in the current presentation

Primary Tasks

- Risk Analysis Framework
- Material testing <u>Dust Explosion</u>
- Reaction kinetics experiments <u>Air Exposure: Time Resolved XRD</u>
- Risk mitigation
- Prototype implementation

Four Material Candidates:

- <u>2LiBH₄ + MgH₂</u>
- AlH₃
- NH₃BH₃
- Activated carbon

Conditions:

- Charged & discharged
- <u>As-synthesized</u> and after reaction cycling
- Without and with <u>hydrogen</u>
- Pure & after exposure to contaminants
- Before and after mitigation

Coordination of Multi-project Partners

Current DOE & IEA/IPHE Task Matrix UTRC Task #							
	AIST	FZK	SNL	SRNL	UQTR	UTRC	1
1.0 Risk Assessment							h
1.1 Formal Risk Assessment						x	1.0
1.2 Std. Bulk Tests	x	x	x	x	x		
1.3 Std. Dust Cloud Tests	x	x				x	2.0
2.0 Thermodynamics &			•				
Chemical Kinetics							
2.1 Calorimetry				x			
2.2 RT-XRD						x	20
2.3 TGA MS			×				3.0
2.4 Kinetics Modeling			×	x	x	x	
3.0 Risk Mitigation							
3.1 Risk Mitigation Concept			× ×	×		v V	
3.2 Calorimetry			~	×		^	4.0
3.3 TGA/MS			×	^			4.0
3.4 Hazards Tests		x	~	x	x	×	
3.5 Surface Analysis		x					
4.0 Prototype System							
4.1 System Design		×					
4.2 System Reaction			×		x	x	
4.3 Subscale prototype					x	x	5.0
4.4 System Design Strategy		x			x		
4.5 Materials Preparation	x	x		x	x		
4.6 Sytem Evaluation		×					
5.0 Communication							
Meetings	x	×	×	xx	x	x	
QuickPlace	x	x	×	xx	х	x	6.0
WEB Sight				xx			
							-

Approach: Activity Relationships

Detailed Testing and Modeling will supplement the Risk Analysis Framework to serve as the basis for risk informed reactivity and C&S decisions.

Besearch Center

6

FY07 & FY08 Milestones

	Milestones
FY08 Q1	Develop qualitative risk analysis to select highest risks for Material #1.
FY08 Q2	Perform dust explosion tests for Material #1.
FY08 Q2	Conduct time resolved XRD for air exposure of Material #1.
FY08 Q3	Implement enhancements to dust explosion and gas exposure reactivity testing.
FY08 Q4	Perform qualitative risk analysis for top three materials.
FY08 Q4	Complete enhanced gas reactivity testing for Material #1.
FY08 Q4	Complete dust explosion tests for Material #2.

Risk Analysis Overview

FMEA Spreadsheet

					Risk Quantificatio Con	ting			
Name of Component or Subsystem	Function(s) of Component or Subsystem	Potential Failure Mode (Operational Risk)	Potential Effect(s) of Failure Mode	Potential Root Cause(s) of Identified Failure Mode	Current Detection and Control Methods	Probability Consequence	Detectability	Risk Priority lumber (RPN)	Ma Ha
Pressure vessel (containing NaAIH4)	Vessel designed to withstand H2 pressure and contain hydride material	1.1 Vessel breach leading to hydride dispersion in a wet environment	Hydride rapid reaction, fire, and potential H2 explosion	1.1.1 Automotive accident	1. Design vessel for crashworthiness 2. Proper vessel lotion in vehicle to minim vulnerability	7 3	(oui	210	Pelleti to rec watei
Comoo		Failure		1.1.2 H al loads from abs esorption	1. Intern design power den 2. oer optic s ouct certification	Rist Sc	2	28	
Initial		nent based on NaAll		1.1.3 Ballistic impact	Damage tolerant fiber overwrap	7 1	10	70	
mater know board	rial and s ledge – l reversi	system due to existin applicable to other or ble materials.					6		
 Risk Priority Number = Consequence * Probability * (lack of) Detectability 					10				
 Accept 	otable / t	hreshold risk: RPN _{tt}	<mark>, = 80</mark> 🖻					-	
Vnited Technolog	İES Resear	ch Center	-	_ <mark></mark>	Î Î				

FMEA Spreadsheet

- If RPN > RPN_{th}, develop recommended actions which include Mitigation Development and Uncertainty Reduction (additional testing/modeling).
- Interpret mitigation Feasibility not as cost, but Technology Readiness Level (TRL).
- Examine impact on non-safety Technical Targets (weight, volume, ...).

Customized FMEA framework developed for on-board reversible hydrides. Population of entries by the multi-project team will be on-going.

Quantitative Analysis: ETA / FTA

- Event Tree (ET) describes accident progression from initiating event to end states.
- The CAFTA computer program is being employed; can be exported to SAPHIRE.
- The probability assigned to each node will be estimated from a fault tree analysis (FTA), experiments / modeling, or expert judgment.

Materials Testing: Dust Explosion

Measurements (ASTM test)

- P_{max}, (dP/Dt)_{max}, K_{st} (E1226)
- Minimum Explosive Concentration (E1515)
- Minimum Ignition Energy (E2019)
- Minimum Ignition Temperature (E1491)

Future variation from conventional ASTM procedures

- Relative humidity monitored only \Rightarrow control RH.
- Perform tests with hydrogen / oxygen gas mixtures.
- Vary ignition delay affect turbulence level.
- Additional diagnostics for heat flux, turbulence, ...

2LiBH₄ + MgH₂: Hydrided State

Sieve Analysis

> 40 mesh (425 μm)	5.9%
> 70 mesh (212 μm)	20.8%
> 100 mesh (150 µm)	12.6%
> 200 mesh (75 µm)	21.8%
> 400 mesh (37 μm)	9.6%
< 400 mesh (37 µm)	29.3%

Ball Milled, Hydrided State

	2LiBH ₄ + MgH ₂	NaAlH ₄ [2]	Lyco. Spores
P _{MAX} , bar-g	10.7	11.9	7.4
(dP/dt) _{MAX} , bar/s	2036	3202	511
K _{ST} , bar-m/s	553 <mark>[1]</mark>	869	139
Dust Class	St-3	St-3	St-1
Min. Explosive Conc. (MEC), g/m ³	30	140	30
T _C , °C	150	137	430
Min. Ignition Energy (MIE), mJ	<9	<9	17

[1] K_{ST} tests were inconclusive since $(dP/dt)_{max}$ was still increasing with dust concentration.

[2] From prior DOE contract DE-FC36-02AL67610.

When finely divided, the material is highly reactive and comparable to NaAlH₄.

Hydrided 2LiBH₄ + MgH₂: dP/dt, K_{ST} & MEC

Partially Discharged 2LiBH₄ + MgH₂

As-desorbed

- 330°C for 2 hrs under vacuum.
- Material is in a coarse state resembling ash.

Hydride powders can sinter to various degrees. Facilitate characterization by employing mild ball milling (2.5 minutes) to mimic high pressure dispersion.

Partially Discharged 2LiBH₄ + MgH₂

Material was SPEX ball milled for 2.5 min. & sieved.

	Hydrided	Partially Dehydrided		
	As-milled	< 200 mesh	100 to 200 mesh	
Min. Expl. Conc. (MEC), g/m ³	30	30	60	
T _C , °C	150	230	310	
Min. Ign. Energy (MIE), mJ	< 9	< 9	22 < MIE < 47	

Coarser powder results in lower reactivity.

CCHNOLOGIES Research Center

Dust Explosion Modeling / Collaboration

Results to be incorporated into dust explosion modeling by Sandia NL and ultimately provide input into the Risk Analysis Framework

Potential integration with higher level UTC Fire & Security Industrial Explosion Protection models.

Air Exposure: Time Resolved XRD

Chemical Kinetics Testing: Air Exposure

Time Resolved X-Ray Diffraction (TR-XRD)

- Ambient air exposure
- Conventional environmental chamber
- Design of chamber with capability for gas flow through the powder as well as across its surface for sufficient Mass Spec time resolution

Real time measurement of composition evolution to complement SRNL calorimetry and SNL flow-through reactor.

2LiBH₄ + MgH₂: Hydrided State

Research Center

- LiBH₄, MgH₂, 2LiBH₄ + MgH₂ (hydrided & partially dehydrided)
- Complex process of water absorption & reaction
- Hydrolysis for mixture predominantly followed that of LiBH₄

Future Work

FY08

Risk Analysis

- Compile input from Expert Panel for on-board reversible risk assessment.
- Initiate quantitative ETA / FTA risk analysis for key hazards of on-board reversible system.
- Define AlH₃ and NH₃BH₃ based system configurations and perform qualitative risk analysis.

Material Testing & Modeling

- Implement enhancements to dust explosion and air reactivity test methods.
- Complete 2LiBH₄ + MgH₂ testing. Collaborate with SNL & SRNL modeling efforts.
- Initiate testing of AIH₃. Sources include Brookhaven NL, Dow and UTC "Russian" alane. Larger quantities will be produced through coordination with Canadian SDTC project.

FY09

Risk Analysis

- Conduct qualitative analysis for activated carbon and update prior configurations.
- Develop quantitative ETA / FTA risk analysis for an off-board regenerative system and refine the on-board reversible analysis.

Material Testing & Modeling

- Conduct dust explosion and air reactivity testing for AlH₃, NH₃BH₃ and activated carbon.
- Develop identified risk mitigation methods.

Go / No Go decision on prototype demonstration

Summary

Objective: Develop a greater understanding of the relationships between material reactivities and the acceptance of automotive systems.

Approach: Due to the objective complexity and scope, establish a multiorganization, multi-national collaborative team.

Scope: *Materials:* metal hydrides, chemical hydrides, adsorbants

- 2LiBH₄ + MgH₂
- AlH₃
- NH₃BH₃
- Activated carbon

Methods:

- Qualitative & quantitative risk analyses
- Materials testing ranging from mechanistic to combined effects. Integration into reactivity & spatial / scaling modeling.
- Development of mitigation methods & demonstrations.

