

2008 Overview DOE Chemical Hydrogen Storage Center of Excellence

Kevin Ott

Los Alamos National Laboratory

June 10, 2008

Project ST4

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start: March 2005
- End: March 2010
- 60% Complete

Barriers

- Weight and Volume
- H₂ Flow Rate
- Regeneration Process
- Energy Efficiency
- Cost
- System Life-Cycle Assessments

Budget for Center Coordination: LANL - 300K; PNNL - 300K

Objectives of the Chemical Hydrogen Storage Center

Identify, research, develop and validate advanced on-board chemical hydrogen storage systems to overcome technical barriers and meet 2010 DOE system goals with the potential to meet 2015 goals:

- Develop chemistries, materials, catalysts and new concepts to control thermochemistry and reaction pathways for hydrogen release
- Regeneration -- develop and demonstrate chemical steps leading to off board regeneration of fuel from spent fuel.
- Assess concepts and systems using engineering analysis and studies using DOE targets as guidance; *engineering-guided research*
- Down select most promising chemical systems for more detailed work and engineering development
- Develop life cycle analysis
- - Demonstrate a 1 kg storage system (\Rightarrow DOE Engineering CoE)
- Transfer chemical hydrogen storage systems information to Engineering CoE when operating, and receive feedback from its analyses

Approach to technical barriers

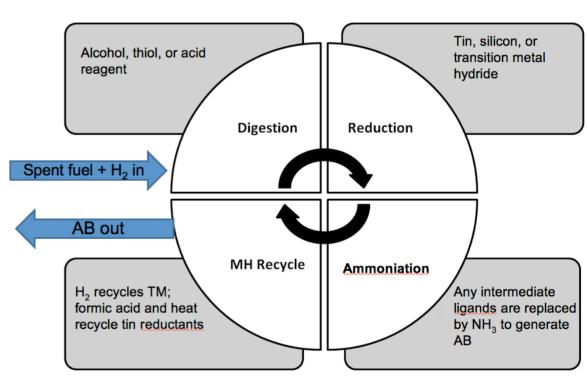
ENGINEERING ASSESSMENT to GUIDE DOWN SELECTION

- Provide early assessment of viability based upon potential to provide an engineered solution
- Guidance to research to move chemistries to efficient processes
- HYDROGEN CAPACITY
 - Develop, synthesize, test compounds with hydrogen densities of > 7 wt. % and favorable energetics for release; materials with potential pathways for direct regeneration with H_2
 - Theory and modeling for insight to materials discovery and optimization

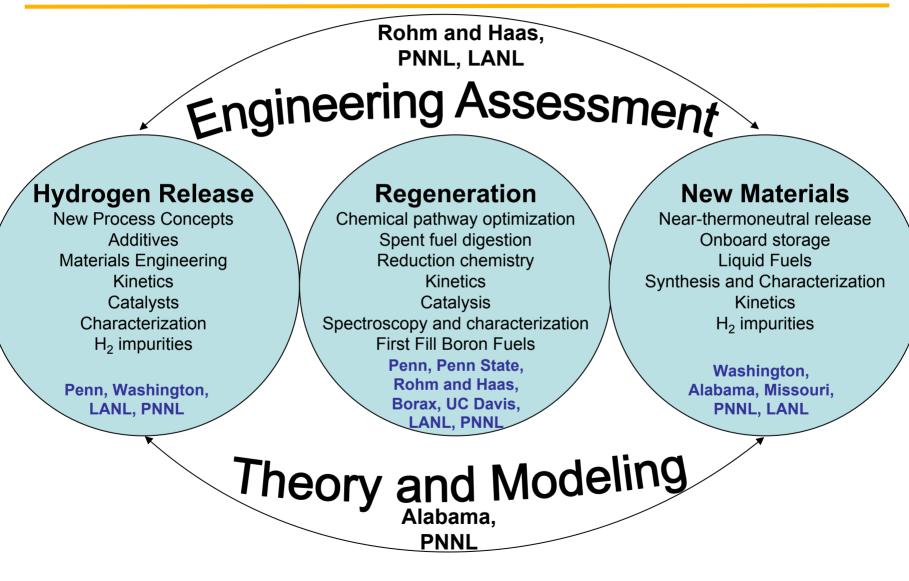
HYDROGEN RELEASE RATES

- Develop materials and pathways that release hydrogen at rates in excess of DOE performance targets at the lowest temperatures possible
- Develop pathways that avoid non-productive byproducts and minimize gas-phase impurities
- Study mechanisms to enhance rates, extents of release, and to aid in the design of catalysts

REGENERATION -- MAXIMIZE ENERGY EFFICIENCY

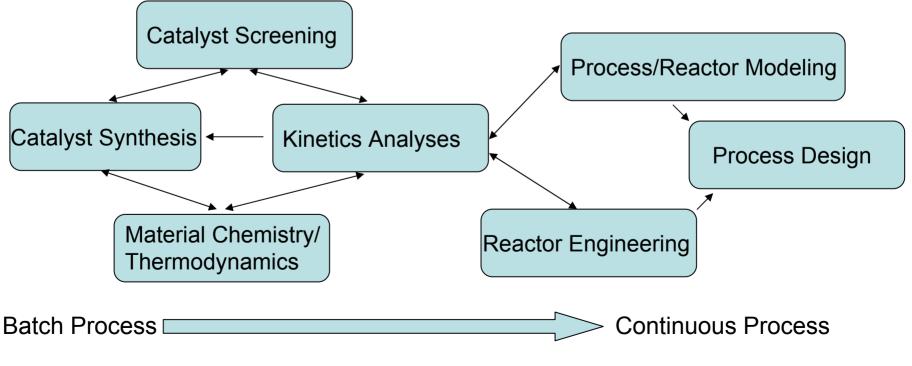

- Develop off board regeneration pathways close to thermodynamic limits
 - Avoid high energy intermediates
 - Use recyclable intermediates
- Demonstrate integrated regeneration chemistries
- Assess well-to-tank energy efficiency of processes

Coordination between engineering, theory, and experiment critical to Center success


Overview of current Center activities

- Hydrogen release approaches
 - Chemical additives
 - Thermolysis
 - Catalysis
 - Hydrogen gas purity
- New materials
 - Designed with high capac and near-thermoneutrality goal
 - Enable on-board regenera
 - Liquid fuel compositions
- Cross-cutting, underpinnin capabilities to guide resear
 - Engineering assessments
 - Theory and modeling

 Regeneration of spent fuel -- 60 to 70% of current Center efforts


Communication between Center partners key to moving forward

DOE Chemical Hydrogen Storage Center

Engineering Guided Approach to Materials and Processes

- Process engineering is playing increasingly important role
 - Provides early assessments of feasibility
 - Yields insights to achieve SYSTEM targets
 - Guides regeneration chemistries based on efficiency, scale up requirements
 - Guides materials, process down select decisions

Engineering Assessment & Coordination Crosscuts Center Activities (PNNL Lead)

- First Fill: Rohm & Haas (lead), PNNL, LANL, US Borax
- Materials engineering and fuel formulation: PNNL (lead), Rohm & Haas, LANL, Penn
- New process concepts for H₂ release: PNNL, LANL, Penn
- AB Regeneration: LANL, Rohm & Haas, PNNL, Penn
- Catalysis requirements: LANL, Penn, PNNL

Theory and modeling guide experiment toward energy efficiencies

- Regeneration (Alabama, Penn, PNNL, UC Davis, LANL)
 - Computation of thermodymic properties of reactants, intermediates, and products
 - Computation and evaluation of reaction pathway energetics
- Hydrogen Release
 - Calculation of energetics of dehydrogenation reactions and reaction intermediates (Alabama, LANL, PNNL)
 - Catalytic reaction pathway energetics to examine extent of release (Alabama, LANL, PNNL)
- New Materials
 - Heats of formation and reaction enthalpies for heteroatom organics (Alabama, Washington, PNNL)
 - Thermochemistry of metal amidoboranes (Alabama, LANL, PNNL)

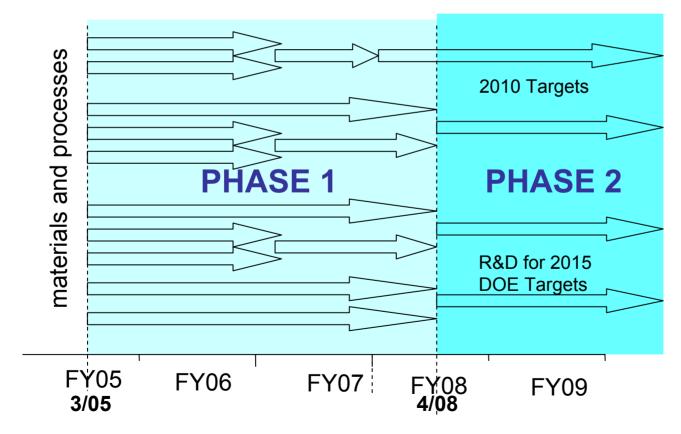
Milestones and Go/ No Go Decisions

Sodium Borohydride (SBH) Go/ No-Go Decision

- Independent Review Panel (University and National Lab members)
- Recommendations
 - No-Go for hydrolysis of SBH for on-board vehicular H₂ storage
 - Continue research activities on low cost NaBH₄ pathways (Rohm& Haas)
 - NaBH₄ is a key starting material for AB and other borane-based on-board H₂ storage systems under consideration
 - Improvements in NaBH₄ production will lead to cost-effective production (first fill) of these systems
- Go/No Go process provided valuable experience in understanding the life cycle of a chemical hydrogen storage system
 - Data requirements
 - Analysis assumptions
 - Contributed to developing Center down select processes

Lessons Learned from SBH G/NG (Sept. 2007)

- Independent reviewers were extremely knowledgeable
- Regeneration and on board issues had equal weighting
- Identify show stoppers early!
 - Solvent-based approaches should target high concentration
 - Phase changes
 - Liquid to solid conversion during dehydrogenation must be avoided, e.g. crystallization of supersaturated spent fuel borates in the SBH case
 - Liquid to liquid or solid to solid conversions or solid to slurry, liquid to slurry conversions more workable
- Feasibility of scale up from bench scale a key consideration
- Chemical yields and energy efficiency are paramount in regeneration
- GNG exercise provided valuable experience for the Center in developing processes for Center down select decisions


Additional key milestones being addressed during this review period

- Chemical Hydrogen Storage Phase 1 Down Select
 - Down-select materials and processes within the Center for engineering and development studies to meet 2010 targets
- H₂ release from AB: achieve >2 equiv. H₂ at higher rates and lower temperatures; mitigate foaming and gas-phase impurities
 - Achieved with additives, scaffolds, and using catalytic release
 - Identified solutions to foaming
- Discover heterogeneous catalysts for AB
 - Found PGM and non-PGM catalysts with high rates and extent of release
- Develop liquid fuel formulations
 - Mixtures of AB with AB derivatives have shown preliminary promise
- Demonstrate individual steps, yields, and thermodynamic efficiencies of regeneration of spent fuel. Demonstrate integrated cycle and efficiency. (DOE Joule Milestones)
 - Demonstrated high yield, high thermodynamic efficiency steps
 - Demonstrated integrated spent fuel to BH₃ cycle

Milestones and Go/ No Go Decisions

Chemical Hydrogen Storage Phase 1 Down Select (Nov. 07)

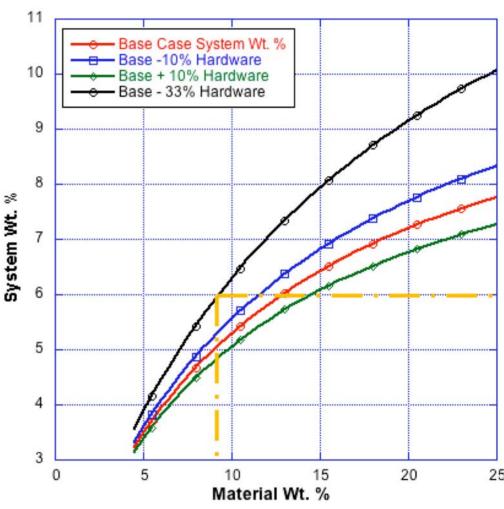
• Focused Center efforts and transitioned work into Phase 2

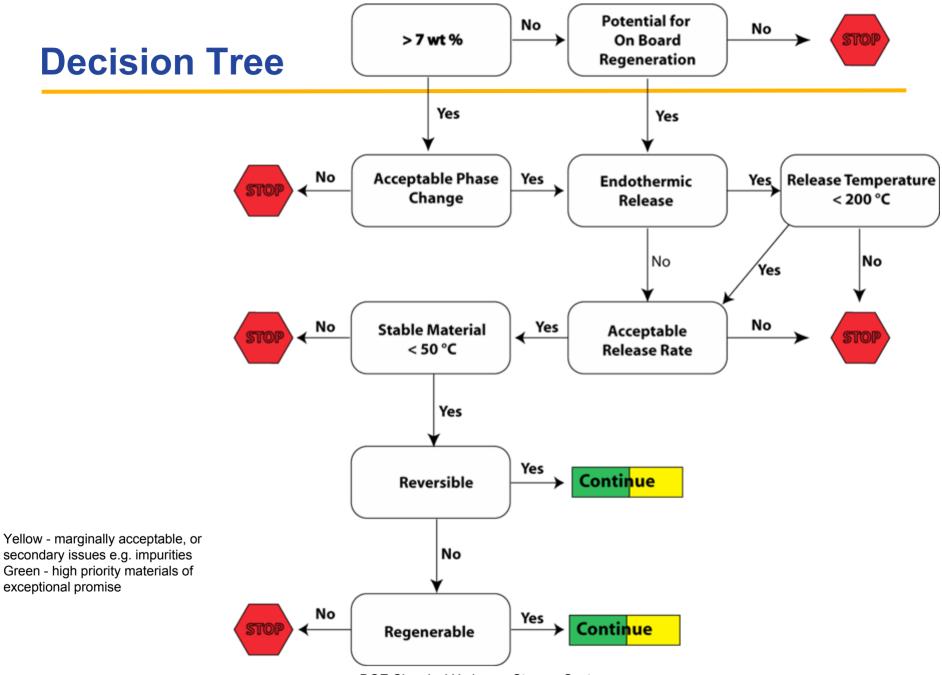
DOE Chemical Hydrogen Storage Center

Down select process for chemical hydrogen storage materials and processes (Nov. 07)

- Collected up-to-date status of relevant materials-related storage parameters on all materials examined within the CoE
- Developed consensus on down select metrics at Center-wide meeting
- Constructed decision tree using down select metrics
- Coordinating Council assessed all of Center's portfolio of materials and processes against the decision tree
- Output was categorized
 - Down selected and proceed with priority
 - Down selected and proceed, but address short-term issues, concerns
 - No go -- halt work
- Recommendations were presented to DOE and guidance implemented for Phase 2

"Down Select Report of Chemical Hydrogen Storage Materials, Catalysts, and Spent Fuel Regeneration Processes" June 2008


http://www1.eere.energy.gov/hydrogenandfuelcells/hydrogen_publications.html#h2_storage

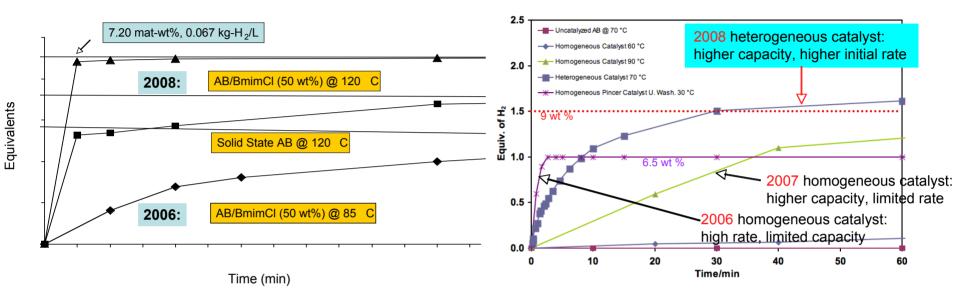

Criterion	Description	Metric
Gravimetric Capacity	Maximum calculated hydrogen weight fraction	> 7 wt. % H ₂
Potential to Regenerate On- Board	Potential to rehydrogenate spent fuel directly	yes/no/?
Regenerable	Ability to chemically reprocess spent fuel off board	yes/no/?
Acceptable Phase Change	eptable Phase Change Problematic liquid to solid phase change, or volatile byproducts	
Acceptable Release Rate	e Rate Maximum rate of hydrogen release, T< 125 °C	
Material Stability	Stable in fuel tank< 50 °C	yes/no/?
Endothermic Release	Hydrogen release occurs endothermically	yes/no/?
Low Temperature	For endothermic reactions, temperature of release <200 °C (with potential for lower T, i.e., 80 °C, release)	Temperature

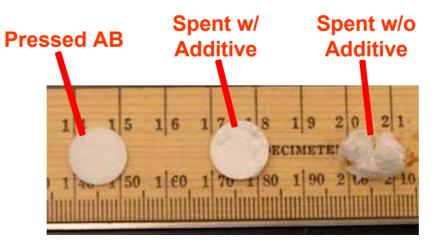
System Gravimetric Guiding Rule Developed from SBH G/NG Experience

- SBH 7.5 wt % material ≈ 4.5 wt% system -- Millennium Cell
- To meet 2010 gravimetric target, need > 10 wt. % H₂ material
- Center's Criterion > 7 wt. %
- Consider lower values for potentially directly regenerable systems

DOE Chemical Hydrogen Storage Center

Down Select Output from Decision Tree Process


- CHSCoE has investigated more than 60 materials or classes of materials
- 50% Deselected
 - Endothermic organic compounds (low capacity)
 - Nanoparticles (low capacity)
 - Magnesium alkoxide/hydrolysis (release temp > 200 °C)
 - SBH (liquid to solid phase change during release)
 - Bronsted acid catalyzed release from ammonia borane (slow)
 - Substoichiometric LiH/AB mixtures (better compositions found)
 - Ammonia borane/solvent mixtures < 50 wt. % AB (capacity)
 - Polyhedral boranes (requires regen of borate B-O bonds to B-H)
- 30% Conditionally down selected, need resolution of certain performance concerns -- e.g. carbenes, methylamine borane, certain metal amidoboranes
- 20% Down selected for priority development -- e.g. ammonia borane, some metal amidoboranes, certain alkylamine boranes
- Redirected partners involved in SBH/hydrolysis to first fill, regeneration efforts, and new materials exploration


Technical Accomplishments - Hydrogen Release from AB

- Demonstrated non-PGM heterogeneous catalysts for AB -- increased rates (2x the DOE target rate), > 9 wt. % H₂, and reduced gas-phase impurities
- Demonstrated use of minor additives to reduce impurities and eliminate foaming of solid AB - enables monolithic fuels of higher volumetric density
- Demonstrated faster rates from AB/IL mixtures to yield 10 wt % H₂ in 15 minutes; >3x the DOE target rate, reduced impurities & foaming
- Quantified gas-phase impurities in H₂; and developed routes/materials to minimize or avoid certain impurities
- Designed, fabricated, and now operating a bench scale continuous flow reactor for catalyst screening and activity studies -- enables catalyst optimization lifetime studies, transient studies, kinetics
- Demonstrated hydrogen purity testing using single cell fuel cell

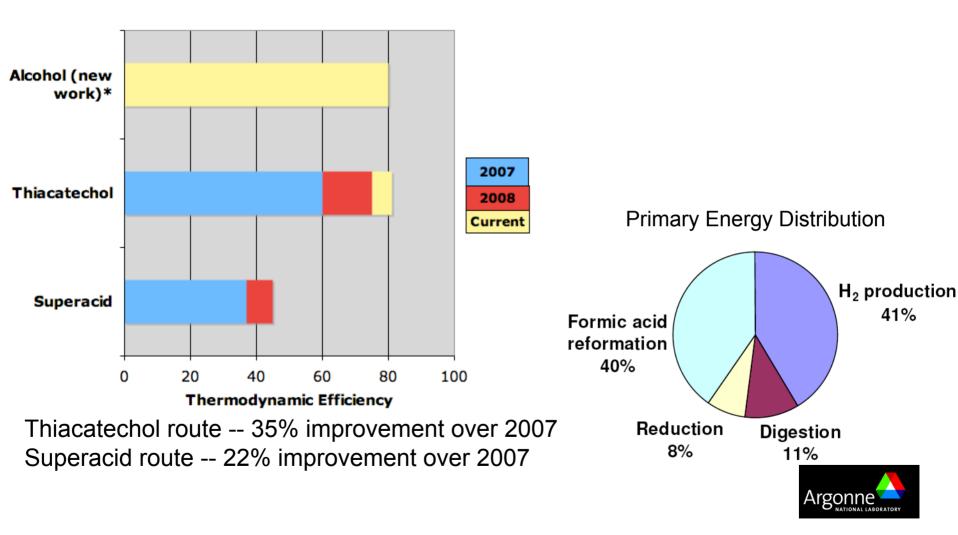
ST-5, -6, -7,-10,-11

Improvements in hydrogen release: Kinetics, capacities, physical properties, impurities

DOE Chemical Hydrogen Storage Center

20

Accomplishments - Spent Fuel Regeneration


- Improved all three current AB regeneration pathways
 - Integrated some steps into single steps
 - Increased yield of integrated chemistries for portions of regeneration cycle
 - Demonstrated metal-hydride recycle chemistries
 - Demonstrated hydride transfer to spent fuel - potentially enabling to the alcohol-based route
- For one pathway, demonstrated all steps to complete regeneration of spent fuel to AB
- Modified regeneration approach based on on preliminary well-totank energy efficiency analysis
- Accomplishments support the goal of demonstrating energy and chemically efficient regeneration

- Effective use of theory and modeling to more rapidly assess regen chemistries and strategies prior to doing experiments.
 - Identified most promising digestion reagents to generate B-X bonds with most favorable energetics
 - Identified most promising energetically efficient reducing agents to reduce B-X with M-H
 - Assisted in matching digestion with reduction chemistries for efficiency
 - Aided selection of co-ligand for L-B-X reduction with M-H to enhance kinetics, yields
 - Identified most promising selection of optimal metals and ligands for hydride transfer
 - Computational analysis of direct rehydrogenation pathways

ST-5,-6,-7,-8,-9,-11

DOE Chemical Hydrogen Storage Center

Regeneration efficiencies and chemical yields improving with continued research

* Not all steps demonstrated, new work

Accomplishments - New Materials Development

- Liquid fuel compositions have been expanded in number, and liquid range to - 30 °C has been demonstrated
 - Goal is to enable design of continuous catalytic reactors for H₂ release
- Search for onboard regenerable materials via molecular design of nearthermoneutral hydrogen release materials
 - With guidance from theory, designed and are synthesizing novel C-B-N-H_x molecular systems -- coupled endo/exothermic dehydrogenation systems
 - Prepared numerous metal amidoboranes that are less exothermic than AB;
 7 wt.% H₂, acceptable kinetics, reduced impurities, reduced or no foaming
 - Computationally explored alane amine and alane amine borane systems. Results are guiding new materials development at Missouri, and has relevance to MHCoE efforts

ST-5,-6,-9,-10

Accomplishments - Engineering Supporting Research

- Developed engineering-guided criteria to underpin Center down select process
 - Brought focus to Center efforts in materials discovery and development
- Developed preliminary spreadsheet analysis of regeneration schemes
 - Guides efficient regeneration chemistry process research
 - Responded quickly to ANL input on process efficiency concerns of AB regen by developing and providing proof-of-principle direct rehydrogenation scheme
- Operating bench scale continuous flow, heterogeneous catalyst reactor
 - Enables heterogeneous catalyst activity, lifetime, kinetics, transient studies, and long-term hydrogen purity studies
- Demonstrated simple hydrogen gas-cleanup chemistry using a fuel cell dosimeter to detect and determine any influence of impurities on FC performance
 - Preliminary data for release systems gas cleanup considerations

ST-5,-6,-8

Materials Comparisons and Progress; Selected Results

	AB Thermolysis/Chemical Promoters							
Metrics	2007 AB/Ionic Liquids (50 %)	AB/Ionic Liquids (50 %)	AB/Ionic Liquids (20 %)	2007 PNNL AB solid 155 °C	PNNL AB solid 160 °C	PNNL AB solid 145 °C	PNNL AB solid 130 °C	
Grav. density (Mat. wt%)	4.2	7.2	10.2	6.5 13	6.5 9 13 >16	6.5 9 13	6.5 9	
H ₂ Flow Rate (g/s) per kg*	.0038	0.08	0.114	.84 .22	1.3 1.2 .54 .16	.93 .50 .11	.43 .1	
Vol. density (kg-H ₂ /L	.023	0.067	0.086	.048	.048	.048	.048	

* DOE target = .02 g/s/kW; rate/kg is roughly equal to rate/kW

 DOE System Targets for Hydrogen Storage Systems

 Gravimetric Density (wt%)
 Volumetric Density (Kg-H₂/L)

 4.5 (2007), 6.0 (2010), 9.0 (2015)
 0.036 (2007), 0.045 (2010), 0.081 (2015)

DOE Chemical Hydrogen Storage Center

Materials Comparisons and Progress; Selected Results

New Materials			AB Catalysis					
Metrics	CaAB ₂	LiZnAB ₃	ScAB ₃	Homog. Fe catalyst-2 2007	Heterog. Pt	Heterog. Cu	Heterog. Mn	Heterog. Ni
Grav. density (Mat. wt%)	7.2	10.5 (tga)	11.1	1.8 eq. H ₂ /AB	1.91 (Eq. H ₂ per AB)	1.82 (Eq. H ₂ per AB)	0.16 (Eq. H ₂ per AB)	0.11 (Eq. H ₂ per AB)
H ₂ Flow Rate (g/s) per kg*	.02	.02	N/A New Work	.008 0.00015	0.057	0.076	0.004	0.002
Vol. density (kg-H ₂ /L	.05 (est.)	.07 (est.)	.05 (est.)	Not measured	.048	.048	.048	.048

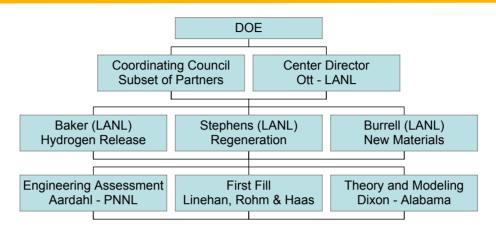
* DOE target = .02 g/s/kW; rate/kg is roughly equal to rate/kW

 DOE System Targets for Hydrogen Storage Systems

 Gravimetric Density (wt%)
 Volumetric Density (Kg-H₂/L)

 4.5 (2007), 6.0 (2010), 9.0 (2015)
 0.036 (2007), 0.045 (2010), 0.081 (2015)

DOE Chemical Hydrogen Storage Center


Future work is aimed at providing diversity of options

- **Regeneration**: maintain diversity of processes to provide options, off-ramps
 - Explore M-H recycle via direct rehydrogenation; develop catalytic routes
 - Demonstrate complete recycle of 1 gram actual spent fuel at high yield
 - Initiate assessment of impact of additives on regeneration schemes
- Engineering Support: analyze progress with respect to key barriers, develop contingencies
 - Continue to provide early identification of gaps, opportunities in processes
 - Assess new well-to-tank results from ANL and address opportunities for improvement in efficiency
 - Hold Center-wide process chemistry brainstorming session to address regeneration process integration, separations chemistry issues
- New Materials: develop alternatives to existing materials, processes
 - Measure H₂ reversibility of existing and new near-thermoneutral materials
 - Continue search to add new promising storage materials and concepts to portfolio
- **Hydrogen Release**: maintain diversity of processes to provide for contingencies (solids, slurries, and liquids -based processes)
 - Solids handling innovations to enable solid-solid reactor design
 - Heterogeneous catalyst lifetime and release kinetics for AB dehydrogenation
 - Continue to expand capacity and improve kinetics of liquid fuels, and promoter- and ionic liquids-based fuels

Summary of Center's Technical Accomplishments

- Center down select process has focused Center to continue to address key barriers
- Engineering- and theory-guided approach allows Center to make rapid progress
- Center has shown significant progress in demonstrating a regeneration process for AB
 - Improved yields, energetics
 - Some steps integrated to provide process simplification
 - Demonstrated regeneration cycle yield of 70% on a batch
- Center has demonstrated improvements in hydrogen release
 - Mitigated foaming of solid AB
 - Demonstrated heterogeneous catalyst for release from AB at 70 °C having rates and capacities in excess of DOE targets
 - Demonstrated AB-additive and scaffold systems that have rates and capacities in excess of DOE targets
 - Demonstrate processes and materials for release that reduce gas-phase impurities
- Center continues to add new promising storage materials to portfolio, while continuing to de-select less promising systems

Center Management and Communication

- Maintain IP agreement that allows free exchange of ideas and materials among Center partners
- Focus areas are coordinated through single LANL point of contact; Coordinating Council
- Regular conference calls and meetings, frequent one-on-one phone calls, site visits to exchange information in real time
- Quarterly tracking of Partner's progress toward DOE targets
- Develop materials down selection criteria and decision tree process to guide Center decisions
- Hydrogen Storage Centers conference calls with DOE to foster cross-Center information exchange with Carbon- and Metal Hydride Storage Centers
- Biannual Center meetings coincident with Tech Team and Annual Review; Fall meeting in Denver
- Participation in Storage Systems Analysis Working Group: cross-Center engineering issues
- Organize Annual Review, Tech Team Review

Key Impacts of Center Communications

- Mid-year Center down select meeting (Denver)
 - Developed engineering-guided decision tree approach to down select
 - Down select process has focused Center efforts
 - Identified crucial engineering issues facing Center in both release and regeneration
 - Brainstormed, identified, and have started work on new materials, new catalysts, regeneration chemistries
- Regular focus area conference calls
 - Conduit for free flow of information on progress, generate new ideas, share results
 - Regeneration, hydrogen release, B-O to B-H for first fill
 - Provide feedback mechanism to increase rate of progress, Center-wide
 - Develop and prioritize capital equipment needs for Center
- Coordinate technical personnel exchange and international collaboration
 - PNNL and LANL staff to Japan
 - PNNL, LANL, Washington, Hawaii PIs to Tokyo Nov. 07 for Joint NEDO/AIST LANL hydrogen workshops (next in series is San Diego, September 2008)
 - LANL staff to Oxford/UK FY07
 - PNNL staff to Singapore FY07
 - Visitors from Oxford, Singapore, Japan, New Zealand: experimental work at National Labs
- Coordinate and promotes collaboration, exchange of materials
- Students from academic partner's labs working alongside National Lab staff and using National Lab instrumentation

Collaborations: Leveraging our efforts to rapidly assess new developments

- Argonne National Lab -- WTT analysis of regeneration efficiency
- Storage Systems Analysis Working Group -- technical exchange among Centers to discuss technical progress to address key barriers
- IPHE partners (UK, NZ, Singapore) -- new materials, personnel exchanges
- Joint Japan NEDO/AIST LANL Hydrogen Workshops (3rd in series -- San Diego, September 2008)
 - MHCoE and CHSCoE participation; anticipate expanded scope this year
 - Technical exchange with Japanese scientists in fuel cells and storage
 - LANL AIST joint work on neutron scattering on storage materials
- Upcoming PNNL and LANL extended visits in Japanese laboratories
- Preliminary discussions with A*STAR/ICES on collaborations with Singapore government research lab in hydrogen projects
- Looking ahead -- key collaboration with Engineering Center of Excellence