

Amineborane-Based Chemical Hydrogen Storage

Department of Chemistry University of Pennsylvania DOE Chemical Hydrogen Storage Center of Excellence

2008 DOE Hydrogen Program ReviewJune 10, 2008Project ID: ST7

This presentation does not contain any proprietary or confidential information

Project Overview

Timeline

Project Start: FY 2005 Project End: FY 2009 Percent complete: 70%

Budget

Barriers Addressed

Barriers

- A. System Weight and Volume
- B. System Cost
- E. Charging/Discharging Rates
- R. Regeneration Processes

Targets

DOE storage targets for kg-H₂/kg, kWh/L and \$/kWh

Total Project Funding: \$1,783,787 DOE: \$1,417,353 Penn: \$366,434

DOE Funding in 07: \$275,000 DOE Funding in 08: \$300,000

Collaborators on Amineborane Project

Operated by Battelle for the U.S. Department of Energy

Overall Project Objectives and Approach

Overall Center and Project Objectives

- Develop Methods for On-Demand, Low Temperature Hydrogen Release from Chemical Hydrides that Can Achieve DOE Targets
- Develop High Conversion Off-Board Methods for Chemical Hydride Regeneration

In collaboration with Center Partners, the goal of this project is to develop new methods for **Hydrogen-Release** and **Regeneration** that will enable the use of amineboranes for chemical hydrogen storage.

$NH_3BH_3 \longrightarrow BNH_x + 3 H_2$ (19.4 wt%, 0.16 kg/L H₂)

Penn Project Approaches to Amineborane Hydrogen-Release and Regeneration Goals

Hydrogen-Release: Use the activating effects of ionic liquids, chemical promoters and/or metal-catalysts to enhance the rate and extent of hydrogen release from amineboranes.

Regeneration: Goals of Penn off-board BNH_x regeneration approach: (1) high yields; (2) avoid formation of B-O bonded intermediates; (3) avoid formation of hazardous diborane; (4) recover all products. Penn method converts BNH_x to boron trihalides, which are then converted to AB via sequential coordination, reduction and displacement reactions.

2008 Objectives and Achievements

Penn Objectives for the Last Year

- Significantly increase the rate and wt% of AB H_2 -release.
- Learn how to better control AB H₂-release mechanisms, intermediates and final spent fuel products.
- Further optimize the super-acid/halide-reduction regeneration process.

Summary of Penn Achievements Since Last Review

- A greatly increased rate of H₂-loss (~2.3 eqv. in 15 min) with 10.2 mat-wt% from AB/ionic-liquid mixtures was achieved at 120°C.
- A rhodium catalyzed AB H_2 -release in an ionic liquid was demonstrated that increases the loss rate for the first H_2 eqv.
- Proton sponge in ionic liquids was shown to both increase the release rate of the second AB H₂ eqv. and greatly reduce foaming.
- NMR, DSC and rate studies revealed that while there are different mechanistic pathways for AB H₂-release, the final spent fuels all contain trigonal sp² BNH_x structures thus enabling a common regeneration strategy.
 - New high yield processes for the conversion of BX_3 to AB were developed that avoid the formation of hazardous diborane and allow complete separation and recovery of all products.

Penn Research Team

PI: Larry Sneddon Postdoctoral: Laif Alden Students:

Dan Himmelberger Bill Ewing Penn Approach to Improving Ammonia Borane H₂-Release. Increase the Rate and Amount of H₂-Release by Activation of AB with:

1. Ionic Liquids

2. Metal-Catalysts/Ionic-Liquids

3. Chemical Promoters

1. Why Ionic Liquid Solvents for Amineborane Dehydrogenations?

Ionic Liquid Solvents

Cations:

Anions:

Reactive: AICl₄⁻, Al₂Cl₇⁻

Inert: PF₆⁻, BF₄⁻, Cl⁻

N,N'-imidazolium

N-pyridinium

Advantages

- Negligible vapor pressures
- Dissolve both neutral and ionic species
- Thermally stable to elevated temperatures
- Non-coordinating anions and cations provide an inert, polar reaction medium
- Promote the formation of ionic or polar intermediates and transition states

2006: Ionic Liquids Increase the Rate and Extent of H₂-Release from AB and Eliminates Induction Period

[‡]1-Butyl-3-methylimidazolium chloride

Bluhm, M. E.; Bradley, M. G.; Butterick, R.; Kusari, U.; Sneddon, L. G. *J. Am. Chem. Soc.* **2006**, *128*, 7748-9.

2007: Other Ionic Liquids Show Increased Extent and Rate of H₂-Release at 85 °C

2008: H₂-Release Rates of AB in Ionic Liquids are Greatly Increased at 120 °C

2008: 10.2 Mat-wt% H₂ in 15 min at 120 °C is Achieved When only 20% BmimCl is Used

10

2008: Metrics for New "Best" H₂-Release Systems

	AB Thermolysis at 120°C			
	Solution-State (15 min, \sim 2 Eq. H ₂)			
Metrics	50 wt% BmimCl	40 wt% BmimCl	20 wt% BmimCl	
Grav. density (Mat. wt%)	7.2	8.7	10.2	
Vol. density (Kg-H ₂ /L Mat.)	0.067	0.078	0.086	
H ₂ Flow Rate (g/s) per kg Material	0.08	0.097	0.114	
Kg of Mat. for 0.8 mol/sec	20	17	14	

 DOE Total System Targets for Hydrogen Storage Systems

 Gravimetric Density (wt%)
 Volumetric Density (Kg-H₂/L)

 4.5 (2007), 6.0 (2010), 9.0 (2015)
 0.036 (2007), 0.045 (2010), 0.081 (2015)

11

NMR Studies Identify Initial and Final Release Products

Conclusion: Both DADB formation and decomposition is enhanced in ionic liquids

Conclusion: Final Spent Fuel Product has sp²-type framework

2. Why Use Metal Catalysts for Amineborane Dehydrogenations in Ionic Liquids?

Catalysts in Conjuction with Ionic Liquids Could Provide:

- (1) Faster H₂-Release
- (2) Better Control of H₂-Release Rates
- (3) Lower Temperature Reactions
- (4) Synergistic Release Mechanisms

Center Partners (LANL and U Washington) have previously demonstated metal catalyzed AB H₂-release in organic solvents.

Since the last program review, AB catalyzed H_2 -release in ionic liquids has been achieved.

2008: Rh Catalyst Increases Release Rate of the First Equivalent of H₂ from AB in Ionic Liquids

2008: Rh Catalyzes Dehydrogenation of Other Amineboranes in Ionic Liquids

• 0 mol% Rh(COD)Cl

3. 2007: Chemical Promotors: Proton Sponge Increases H₂-Release from AB in Solution and Avoids the Formation of M⁺BH₄⁻ and NH₃

 $NH_3BH_3 + 5 mol \% PS at 85 °C in Ionic-Liquids or Tetraglyme (250 mg) (91 mg) (250 mg)$

2008: Proton Sponge Increases the Release Rate of the Second Equivalent of H₂ from AB and Reduces Foaming

2008: Foaming Suppressed with Proton Sponge

2008: Foaming Suppressed with Proton Sponge

After 23 hours

Penn Approach to Regeneration: Super-Acid/Halide-Reduction Process

Important Goals: (1) high yields, (2) avoid the formation of B-O bonds, (3) avoid the formation of B_2H_6 , and (4) recover all products

First Step: Digestion of Spent Fuel by Super Acidic Halo-Acids

$$BNH_{x} + 4 HX \xrightarrow{AIX_{3}} BX_{3} + NH_{4}X$$
$$X = CI,Br$$

Second Step: One-Pot Conversion of BX₃ to AB

Coordination of BX_3 $BX_3 + Base \longrightarrow Base BX_3$ BX Reduction $Base BX_3 + 3 HMR_3 \longrightarrow Base BH_3 + 3 XMR_3$ M = Sn, Si

Base Displacement by NH₃ Yields AB

 $BaseBH_3 + NH_3 \longrightarrow H_3NBH_3 + Base$

2007: Step 1. Digestion. Superacidic HX/AIX₃ Solutions Digest BNH_x Spent-Fuels

HBr + 2 AlBr₃ \longrightarrow H⁺ + Al₂Br₇⁻

Farcasiu, D.; Fisk, S. L.; Melchior, M. T.; Rose, K. D. J. Org. Chem. 1982, 47, 453-7

2007: Step 2. Coordination, Reduction and Displacement to Regenerate AB from BBr₃

A One-Pot 84%-Yield of AB from BBr₃ Has Been Achieved via the Reduction of Diethylaniline-BBr₃ Followed by NH₃ Exchange

Alabama (Dixon) analysis indicates regeneration efficiency for total process (Steps 1 and 2) could meet 60% DOE target, depending upon reactants and heat recovery

2008: New Reduction Processes are Quantitative and Allow Separation and Recovery of All Products

Isolation of Reduction Products

Overall AB Yield from BBr₃; 96%

Future Studies

AB H₂-Release

AB and MAB Regeneration

- Optimize the higher-temperature/weight-ratios for ionic liquid based H₂-release systems
- Continue to develop and optimize chemicalpromoter systems with improved H₂-release rates
- Investigate a wider range of metal catalysts for H₂-release in ionic liquids
- NMR studies focused on learning how to control H₂-release mechanisms to achieve the most regenerable spent fuels
- Take advantage of synergistic mechanisms to improve H₂-release rates
- AB Digestion: The conversion of spent fuel to BX_3 must be improved for this scheme to be viable. Future work will use more forcing conditions.
- BX₃ Reduction: This step is finished and optimized in the laboratory, but is it industrially feasible? Future collaborative work with Rohm and Haas will focus on process design and scalability.
- In collaboration with other center partners, new investigations of the use of the super-acid/halide-reduction process for the regeneration of other fuels such as LiNH₂BH₃.

Collaborations and Technology Transfer

Penn work on H₂-Release/Regeneration is Highly Coordinated with Partners by Frequent "Brainstorming" Discussions, Laboratory Visits, and Sample and Measurement-Sharing. Partner Collaborations Provide Complimentary Expertise:

- Penn: new H₂-release methods for AB and AT using chemical promotors and ionic liquids; solution NMR-characterization and regeneration of spent-fuel products
- LANL: AB homogeneous and acid dehydrogenation catalysts and regeneration methods
- PNNL: supported AB dehydrogenation catalysts and studies of key dehydrogenation steps, new hydrogen-recovery methods, solid-state NMR studies
- U. of Washington: studies of fundamental amineborane coordination chemistry and mechanisms of homogeneously catalyzed AB dehydrogenation
- U. of Alabama: computational studies of amineborane reaction pathways and stabilities, evaluation of the energetics of regeneration methods
- Rohm and Haas: provides starting materials for amineborane synthesis and key expertise in process design and scalability.

Future Studies will Now Rely Heavily on Industrial and National Laboratory Partners for Engineering and Scale-Up of Technologies

PNNL and LANL: Engineering assessments and implementation of solid and liquid-based H₂-release systems.
 Rohm and Haas: Engineering assessment and scale-up of new regeneration process