

DOE Chemical Hydrogen Storage Center of Excellence Low-Cost Precursors to Novel Hydrogen Storage

Materials

Project ID# ST8

S. W. Linehan, F. J. Lipiecki, A. A. Chin, L. Klawiter Rohm and Haas Company June 10, 2008

This presentation does not contain any proprietary, confidential, or otherwise restricted information

1

Overview

Timeline	Barriers
 Start: March 1, 2005 End: February 28, 2010 60 % complete 	 Cost Energy efficiency Regeneration processes System life cycle assessment

Budget			
	Phase 1	Phase 2	Total Funding
DOE	\$1,136K	\$632K	\$1,768K
ROH	\$537K	\$285K	\$822K
Overall 68:32 DOE:ROH Split			

A Continuation Application with new scope and budget has been submitted to DOE.

Objectives

- Overall: Develop and advance novel hydrogen storage materials to meet DOE 2010 targets and with potential to meet 2015 targets
 - Leverage expertise and experience across Center: engineering requirements, economics, life cycle analysis
 - Support DOE Chemical H₂ Storage Systems Analysis Sub-Group
- Define and evaluate novel chemistries and processes for producing chemical hydrides (Phase 1)
 - Emphasis on low-cost routes to regenerate sodium borohydride from spent fuel leading to Go/No-Go Review
- Identify cost and energy efficient pathways to "first fill" and regeneration for ammonia borane (AB) and other borane materials (Phase 2)
 - Continue experimentation leading to selection of single pathway for low-cost NaBH₄ and further AB process technology development
 - Guide selection of a top AB regeneration scheme for experimental studies on most promising alternatives

Go/No-Go Process: Basis of Center Evaluations Moving Forward

- NaBH₄ process provided valuable experience in requirements for the life cycle of a chemical hydride system
 - Data requirements
 - Analysis assumptions
 - Applicable to AB and other systems of promise
- Independent Review Panel
 - University and National Laboratory experts
- Recommendations
 - No-Go for hydrolysis of $NaBH_4$ for on-board vehicular H_2 storage
 - Continue research activities on low cost NaBH₄ pathways
 - NaBH₄ is a key starting material for AB and other borane-based onboard H₂ storage systems under consideration
 - Improvements in NaBH₄ production will lead to cost-effective production (first fill) of these systems

Low Cost NaBH₄ is Essential to Center Success

- Low Cost Ammonia Borane (and other borane-based materials) requires low cost NaBH₄ for initial system fill
 - NaBH₄ is dominant component to AB costs

```
nNaBH_4 + (NH_4)_nX = nNH_3BH_3 + Na_nX + nH_2
```

Lower cost NaBH₄ technologies needed

Milestones

Month/Year	Milestone or Go/No Go Decision	
June 2007	Key chemistries demonstrated to validate leading NaBH ₄ chemical pathways.	
September 2007	Feasibility of leading NaBH ₄ pathways established based on laboratory-scale experimental demonstration and cost analysis.	
November 2007	No Go decision for NaBH ₄ for on-board hydrogen release; Go decision to progress R&D on NaBH ₄ synthesis for low cost first fill AB	
July 2009	Top NaBH ₄ synthesis route selected for development	

Technical Approach

Identify Leading Pathways	Determine Feasibility of Leading Pathways	Detail Performance to Select Single Pathway	Single Pathway Selected
 Develop screening and evaluation criteria specific to NaBH₄ regeneration cycles Review prior technical and patent literature Select leading NaBH₄ regeneration pathways based on theoretical energy efficiencies from reaction energetics and relevant metrics 	 Demonstrate key chemical and process steps in laboratory studies Develop flow sheets and preliminary energy requirements and cost estimates for leading systems 	 Establish complete material balance to determine intermediates and purification requirements Demonstrate all chemical and process steps Investigate scalability 	 Develop single NaBH₄ process Update economics

Technical Accomplishments Overview

- Feasibility of 2 new low-cost NaBH₄ routes identified
 - Metal reduction of borate
 - Carbothermal reduction of borate
- Key chemistry step of NaBH₄ formation demonstrated
- Conceptual processes developed show significantly improved energy efficiency and lower cost compared to current Schlesinger technology
- Research on electrochemical reduction pathways to NaBH₄ discontinued (Penn State)
- Spent AB regeneration analysis support initiated

Leading NaBH₄ Pathways Identified

Pathway	Chemistry
Schlesinger (current)	4NaH + $B(OCH_3)_3 \rightarrow NaBH_4 + 3NaOCH_3$ - 25% utilization of Na metal
Metal Reduction	1-step: NaBO ₂ + 2x/y M + 2H ₂ \rightarrow NaBH ₄ + 2/y M _x O _y 2-step: 2x/y M + 2H ₂ \rightarrow 2x/y MH _{2y/x} NaBO ₂ + 2x/y MH _{2y/x} \rightarrow NaBH ₄ + 2/y M _x O _y - lower-cost metal and lower usage vs. Na - reactive milling
Carbothermal Reduction	NaBO ₂ + 2CH ₄ \rightarrow NaBH ₄ + 2CO + 2H ₂ - methane instead of metal reductant - syn gas (CO/H ₂) byproduct - high temperature to convert B-O to B-H

Metal-Based Reduction Feasibility Established

¹¹B NMR confirms and quantifies NaBH₄ formation

Lab reactive milling capabilities established

High NaBH₄ yields demonstrated with metal hydrides

Carbothermal Reduction Feasibility Established

Net: $4CH_4 + 2O_2 \rightarrow 4CO + 8H_2$ Borate Reduction:

 $NaBO_2 + 2CH_4 \rightarrow NaBH_4 + 2CO + 2H_2$

NaBH₄ Regeneration Conceptual Process Using Metal Reduction

 $NaBO_2 + 2x/y M + 2H_2 \rightarrow NaBH_4 + 2/y M_xO_y$

NaBH₄ Regeneration Conceptual Process Using Carbothermal Reduction

 $NaBO_2 + 2CH_4 \rightarrow NaBH_4 + 2CO + 2H_2$

Lower cost and higher efficiency process expected with elimination of metal recovery.

Cost Estimating Methodology Established

Regenerated NaBH₄ Costs Approach DOE Fuel Targets

Pathway	Cost, \$/kg H ₂ ¹	Fuel Energy Efficiency ²
DOE 2010 Target	2-3	60%
Metal Reduction	6-12	43(19)%
Carbothermal Reduction	2-7	50(19)%

Cost ranges reflect sensitivities in yield, production volume, capital investment, utility costs, byproduct values, and labor costs

- 1 Delivered H_2 cost to auto
- 2 Energy content of H₂ delivered to auto relative to total energy to process including fuel input energy of H₂ and any other fuel streams used for generating process heat and electrical energy. Electricity from hydroelectric. () indicates efficiency based on US Electrical Grid.

Sensitivity Analysis Shows Scenarios to Achieve DOE Fuel Cost Targets

<u>Carbothermal Reduction Route</u> (Base = \$6.0/kg)

Low Cost NaBH₄ Routes Will Help AB Meet DOE Storage System Cost Targets

- With No-Go decision for on-board NaBH₄ hydrolysis, focus turns to low cost means for first charge of fuel (AB)
- Project scope unchanged NaBH₄ paths applicable to borate as raw material or as spent fuel
- With lower NaBH₄ demand, efficient energy sources (i.e., hydroelectric) may be practical

Pathway	H ₂ Cost, \$/kg	AB Cost, \$/kg * (NaBH ₄ RM)
Metal Reduction	6-12	1.6-3.1
Carbothermal Reduction	2-7	0.5-1.8

* Excludes borate feed cost; 100% yield to AB

Assuming AB media is 33% of storage system costs, AB media cost targets are \$5.8/kg AB in 2010 and \$2.9/kg AB in 2015.

Future Work

- Progress process R&D to create high-yield, low-cost scalable NaBH₄ process for first fill AB
 - Continue studies on both metal-based and carbothermal reduction
 - Identify byproduct formation
 - Define chemistry and process window
 - Identify scale-up options and evaluate viability
 - Develop separation and purification needs
 - Detail conceptual process and costs
 - Select single top pathway
 - Continue R&D to define and develop process
 - Update flowsheets and economics
 - Develop life cycle impacts

Future Work (cont.)

- Support AB synthesis and regeneration research
 - Apply NaBH₄ metrics-based process to select top AB pathways
 - Provide conceptual process development and cost estimates
 - Conduct "first fill" AB synthesis process analysis

1st Fill AB Synthesis

UPenn Halo-Superacid AB Regen

Define high yield, low cost, scalable processes

- Leverage Rohm and Haas competencies across Center
 - Process development
 - Engineering assessment

Summary

- Experimental studies confirmed feasibility of two leading pathways for regenerating NaBH₄ from spent borate fuel
 - Metal reduction
 - Carbothermal reduction
 - Both show potential for significant cost improvement over current Schlesinger process
- Independent Panel Review found
 - Sound chemistry, but early stage
 - NaBH₄ analysis methodology valuable: tool applicable to AB and other promising storage materials
- Research on low-cost pathways to NaBH₄ will continue
 - NaBH₄ is a key starting material for AB and other borane-based materials under consideration
 - Improvements in NaBH₄ production will lead to cost-effective "first fill" for these systems
- Phase 2 focus
 - Detailing conceptual process and cost for top NaBH₄ pathway
 - Applying metrics-based NaBH₄ pathway analysis to AB assessments

Collaboration and Technology Transfer Phase 2

- AB regeneration processes
 - Rohm and Haas, PNNL, LANL, U. Penn
- "First fill" AB process analysis
 - Rohm and Haas, PNNL, LANL

Pacific Northwest National Laboratory Operated by Battelle for the U.S. Department of Energy

Acknowledgments

Mike Bender Kebede Beshah Shih-Ying Hsu Puja Jain Joe Magee Steve Maroldo Sam November John Yamamoto

Larry Guilbault, Innochem Inc. Duane Mazur, Electrolytica Inc.

