

Advanced Boron and Metal Loaded High Porosity Carbons

T. C. Mike Chung (Other Members in PSU Team: Vince Crespi, Peter Eklund, Hank Foley)

The Pennsylvania State University April 18, 2008 Project ID#: STP 11

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start: 2/1/05
- Project end: 1/31/10
- % complete: 60%

Budget

- Total funding for PSU team
 - DOE share: \$1.2M
 - Contractor share: \$0.3M
- FY06 \$ 225,000
- FY07 \$ 333,000

Partners

Dispersed throughout HSCoE: • NIST (neutron), NREL (TPD), Air Products (vol. ads.), UNC (NMR)

Barriers

- <u>A:</u> System Wt & Vol: Hydrogen volumetric (1.5 kWh/L) and gravimetric (6wt%) storage density goals for 2010
- B: System Cost: High-volume low-cost synthesis routes (via pyrolysis, arc)
- <u>C:</u> Energy Efficiency: Low pressure, moderate temperature operation (via enhanced binding energy through chemical modification)
- E: Charge/discharge rate: via Mixed micro/mesopore structures through precursor design
- <u>J:</u> Thermal management: via designed moderate binding energies of mixed physi/chemi-sorption
- P: Improved understanding: via calculations in close coupling with fundamental measurements on well-characterized, well-ordered systems

Project Objectives and Approaches

6 wt% H₂ storage goal by increasing binding energy (10-30 kJ/mol) and SSA (> 2000 m²/g)

Project Activities and Schedule

- Developing synthesis routes and processes to prepare B/C (B-substitution) materials.
 - Characterizing new B/C materials and structure-property-H₂ adsorption relationship.
- **FY07** Synthesizing the desirable B/C materials with high B content and high SSA, and their H_2 adsorption.
 - Investigating synthesis routes to prepare atomic metal dispersion (M-intercalation) in B/C materials.
- Synthesizing the desirable B/C and M/B/C materials with B content (>10 mol%), M content (>3 mol%), and SSA (>2000 m²/g).
 - Studying structure-property relationship.

Synthesis of B/C Materials by B-containing Precursors

Reactive B-CI for stabilization

PENNSTATE

Synthesis of Micro-porous C/B Material

Pyrolysis	В	В	Surface
temp.	content ^a	content ^b	area ^c
(°C)	(wt%)	(wt%)	(m²/g)
600	7.2	7.6	780
800	5.7	7.1	528
1500	3.8	3.0	33

a. Prompt Gamma-ray Activation Analysis (NIST).

b. ¹¹B MAS-NMR measurement (UNC).

c. BET method using N_2 gas at liquid N_2 .

BJH Desorption dV/dlog(D) Pore Volume

6

Micro-porous B/C

Solid State 11B MAS-NMR spectra of B/C materials

(a) 150, (b) 600, (c) 800, (d) 1000 °C

PENNSTATE

8 5 5

Yue Wu (UNC) and Mike Chung 7

XRD Patterns of C/B materials

PENNSTATE

×1.55

Evolution of B/C Sructure during Pyrolysis

1000 °C

>1500 °C

B/C materials with various B site structures that are controlled by pyrolysis temperatures

PENNSTATE

Hydrogen Uptake in Micro-porous B/C (SSA: 780 m²/g)

Initial heat of adsorption for the B/C material is <u>12.47 kJ/mol</u>

• About 2 times H₂ adsorption capacity (vs. C having similar SSA)

¹H NMR spectrum of H₂ Gas in Porous B/C Material

PENNSTATE

1

Peak 1 and peak 2&3 depend linearly on pressure as expected for free H_2 gas Peak 4 shows nonlinear pressure dependence. Using the Langmuir equation, an estimate of binding energy E_{ads} =11 kJ/mol.

Boron significantly enhances H₂ binding energy

Yue Wu (UNC) and Mike Chung

11

Metal-loading in B/C Materials

Comparison of Metal Loading onto C and B/C Materials

Metal Containing Reagents	Activated C (200 mg, 600 m ² /g)	B/C Material (200 mg, 500 m ² /g)
	After metal loading	After metal loading
	(mg)	(mg)
$H_2PtCl_6^a$	230	234
Cp ₂ TiCl ₂ ^b	200	309
Cp* ₂ ZrCl ₂ ^b	205	222
$[(n^5-Cp^*)SiMe_2(n^1-$	203	272
$NCMe_3)]TiCl_2^{b}$		

a. Loading in surfactant/water emulsion

b. Loading in toluene solvent (without surfactant)

Substitutional B in C structure enhances metal intercalation

High resolution TEM Image of Zr/B/C Material

B/C Material with Cp*₂ZrCl₂

Zr/B/C Material

Wave-like B/C structure

Uniform Zr particles (size < 2nm)

Intercalating uniform metal nanoparticles without surfactant

PENNSTATE

× 10

- Micro-porous B/C Materials (B ~8%, SSA ~800 m²/g) has been prepared by B-precursor and pyrolysis
- B/C Structure Changes with Pyrolysis Temp B moiety gradually immerses in graphitic structure
- B/C Shows H₂ Binding Energy (~12 KJ/mol) and Double Adsorption Capacity (vs. C)
- New M/B/C Materials Have Been Prepared with Intercalated Nano-Metal Particles

Future Work

Year 08

- Increase Surface Area of B/C Materials
 H₂ adsorption could reach 6 wt% if B/C material would contain > 10% B and >2000 m²/g
- Increase Binding Energy of M/B/C Materials H₂ adsorption at ambient temperature requires higher binding energy (15-30 KJ/mole)
 Finding right M species
 - Well-dispersed metal atoms or neat atomic particles
- Spill-over on M/B/C Materials