Catalyzed Nano-Framework Stabilized High Density Reversible Hydrogen Storage Systems

S. Arsenault, D. Mosher, S. Opalka, X. Tang, T. Vanderspurt, B. Laube, R. Brown United Technologies Research Center

E. Rönnebro T. Boyle Sandia National Laboratories

F.-J. Wu J. Strickler Albemarle Corporation

Project ID STP16

DOE Hydrogen Program Annual Merit Review Arlington, VA June 9, 2008

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- 7/1/07 Start (signed 9/4/07)
- **7/1/10 End**

Budget

- \$1.26M Total Program
- DOE: \$1.01M
 - SNL: \$360k
 - Albemarle: \$90k
 - Cost share: 20% (31% UTRC \$)
- **FY07:** \$80k
- **FY08: \$480k**

Barriers Addressed

- P. Lack of Understanding of Hydrogen Physisorption and Chemisorption
- A. System Weight and Volume
- E. Charging/Discharging Rates www.eere.energy.gov/hydrogenandfuelcells/mypp

Partner Participation

- Sandia National Laboratories
- Albemarle Corporation
- Aspen Aerogels
 United Technologies

aspen aerogels

Design & synthesize hydride / nano-framework combinations to improve:

Reversible capacityDesorption temperatureCyclic life

Build upon successes previously demonstrated in the community and <u>extend to a wider range of doped, functionalized and catalyzed framework</u> <u>chemistries</u> to:

- Advance the understanding of behavior modification by nano-frameworks
- Obtain / maintain nano-scale phase domains
- Tune hydride / framework interactions to
 - Decrease desorption temperature for highly stable compounds
 - Stabilize high capacity compounds *ligand elimination*
 - Influence desorption product formation
- Activate H_2 dissociation on highly dispersed catalytic sites

High Level Approach

Atomistic & Thermodynamic Modeling Framework design, Material compatibility

Framework Synthesis

Hydride Synthesis

Structure & Performance SEM, TEM, Sievert's Ir

Reaction Testing

Hydride Incorporation

Screening Characterization Chemical reactivities: DSC, TGA Framework morphology: BET

DSC

United Technologies

Detailed Approach

Phase	Phase I	Phase II
Task	Years 1 & 2	Year 3
First Principles Modeling	Examine hydride / framework interactions. Screen doped / catalyzed / functionalized frameworks.	Evaluate mechanisms of down- selected hydride / framework systems.
Thermodynamic Modeling	Assess chemical compatibility of hydride / framework combinations.	Comparison of bulk scale & nano scale properties.
Nano- Framework Development	Synthesize and characterize uncatalyzed and catalyzed frameworks.	Optimize doped / catalyzed / functionalized framework for down- selected systems.
Hydride Development	Synthesize high capacity hydride materials.	Refine high capacity hydride synthesis methods.
Hydride Incorporation into NFS	Incorporate hydrides into designed frameworks. Characterize properties.	Maximize hydride incorporation into framework for improved capacity.

Iterative design and synthesis of high H₂ capacity systems.

Milestones

Date	Milestone or Go / No Go Decision	
2008 Q1	Select advanced nano-framework structure	
2008 Q1	Demonstrate synthesis of desired nano-framework structure	
2008 Q1	Synthesize top Sandia candidate hydride material	
2008 Q2	Synthesize top UTRC / Albemarle candidate hydride material	
2008 Q4	Evaluate relative performance of catalysts	
2008 Q4	Synthesize optimal catalyzed nano-framework structure	
2009 Q1	Demonstrate loading of UTRC / Albemarle hydride into catalyzed framework	
2009 Q2	Demonstrate loading of Sandia hydride into catalyzed framework	
2009 Q3	Go / No Go on whether to proceed with original plan or redirect based on: > 50% hydride deposition into the CFS Reasonable absorption/desorption behavior for at least one cycle Performance relative to the state-of-the-art material shows promise	

Material Focus & Partner Roles

Hydrogen Storage Material (HSM)

- SNL: Ca(BH₄)₂ (stable borohydride)
- UTRC / Albemarle: NaTi(BH₄)₄*ligand, ...
- Compatibility screening / Baseline modeling: LiBH₄

A&TM: Atomistic and Thermodynamic Modeling **NFS**: Nano Framework Structure

HSM: Hydrogen Storage MaterialCSM: Combined Structure & Material

Capabilities – Nano-Framework Development

United Technologies

Autoclave System

- 2200 PSI
- 300°C

Wet Chemistry Laboratory

Process Development

Range of chemistries

- Oxides
- Non-oxides
- Polymers, ...

Large Scale Manufacturing

Future cost reduction

Capabilities – Hydride Synthesis / Incorporation

Solid State Processing

- Very rapid, low cost screening
- Limited conditions
- High cost for high volume production

Autoclave System

- Solvated incorporation

- 2200 PSI
- 300°C

High-Pressure station

- Solid state reactions
- Wide range of P and T <20,000psi, <500°C
- Autoclave with six samples capability

Solvated Hydride Incorporation

- Solvents selected for ease of removal

Solution Based Processing Chemical Design & Synthesis

- Excellent control
- High purity products
- Expensive processing
- Cost- effective high volume production

Research Center

United Technologies **Experimental Methods – Characterization**

Inductively Coupled Plasma

Quantify total metal loading

TEM / High Res SEM

Morphology, catalyst dispersion and size, hydride loading

United

BET Nitrogen Porosimetry

Surface area, average pore size, and pore size distribution

Differential Scanning Calorimetry

Thermogravimetry-Mass Spectroscopy

Desorption temperature & species

X-Ray Diffraction

Additional characterization support will be provided by other MHCoE partners Technologies **Research Center**

Atomic Modeling of Hydride-NFS Interactions

Mechanistic simulations guide NFS down-selection, design and modification.

United

'echnologies

Screening of NFS Stability and Hydride Interactions

Strategy:

Guide experiments by determining promising as well as unfavorable system characteristics.

Baseline System:

LiBH₄ is highly stable. Balance reversibility by increasing dehydrogenation product interaction with NFS.

Adhesion to NFS ∆H_{adh} (kJ/mole LiBH₄) (- =favorable)

ZrO₂ NFS predicted to have low reducibility in an H₂ atmosphere and weaker tunable interfacial associative interactions with LiBH₄.

Hydride Physi-/Chemisorption Interactions w/ NFS

Technologies

NFS Doping Alters Hydride Dehydrogenation

- Dopants substituted in most favorable position.
- Increased hydride interactions with increased typical formal dopant valence.

NFS dopants used to balance both lattice stability and electronic NFS/hydride interfacial interactions. Sc predicted to enhance LiBH₄ dehydrogenation.

🖋 United

Technologies

Thermodynamic Modeling - NFS / Hydride Compatibility

Predicted reaction from thermodynamics motivates additional modeling and experimental efforts.

Objective: Use thermodynamic modeling in combination with experimentation to guide design of stable framework compositions.

Thermodynamic Modeling – Potential Oxide Reduction

Example: Possible hydride reactivity with NFS

- Only LiBH₄ thermodynamic data initially available in HSC Software
- Oxides may be susceptible to reduction
- SiO₂ was reported as catalyst for LiBH₄ dehydrogenation¹, but has shown thermodynamic instability

 $4LiBH_4 + 3SiO_2 = 2Li_2O^*SiO_2 + Si + 4B + 8H_2(g)$ $\Delta G_{298K} = -49.286 \text{ kJ}$

Currently conducting thermodynamic evaluations of Ca(BH₄)₂ / NFS interactions

Methods to prevent oxide reduction and examine the possibility of boronic acid formation are being explored.

1. A. Züttel, S. Rentsch, P. Fischer, P. Wenger, P. Sudan, Ph. Mauron, Ch. Emmenegger, "Hydrogen Storage Properties of LiBH4", J. Alloys and Compounds 356 (2003)

Nano-Framework Materials Development

Initial focus on oxide and carbon materials:

Xerogels (SiO₂, Al₂O₃, ZrO₂): 5nm & >300m²/g

Cryogels (Al₂O₃): 5 - 20nm & >300m²/g

SiO₂ Aerogels: 17nm & > 550m²/g

Carbon Aerogel: 10 - 25nm & >600m²/g

Xerogel

Cryogel

SiO₂

Aerogel

Carbon

Aerogel

aspen aerogels

Hydride Development

- Metal borohydrides, Alkaline (Ak)-Transition metal (Tm)-B-H, were developed under contract DE-FC36-04GO14012.
- Multistep reactions significantly lower dehydrogenation onset temperatures and improved kinetics. Only trace B₂H₆/B₃H₉ detected in the outgas.

irreversible segregation thus improving reversibility.

Chnologies Research Center

United

NaTi(BH₄)₄*ligand – Up to 7.3 wt% H₂ Endothermic

Down-selected NaTi(BH_4)₄ based on potential for reversibility, low desorption temperature and possible solution based incorporation.

Research Center

United

Technologies

Research Center

20

Solvated Synthesis of Metal Borohydrides

Solution deposition of MBH onto silica substrate illustrates that deposition by this method will be possible. However, contamination with NaX by product appears to be problematic. Schemes to further purify the MBH from the NaX are underway.

Research Cente

Solvent-free Synthesis of Metal Borohydrides

Identification of final materials not consistent with known PXRD patterns of $Mg(BH_4)_2$ or $Ca(BH_4)_2$. Contamination by Br indicates additional work to purify final product necessary. Sequential stepwise characterization of intermediates underway.

Hydride / Framework Compatibility Screening

framework with hydride.

LiBH₄ use for initial compatibility screening because of high reactivity, availability, and existing thermodynamic data.

Compatibility Screening – SiO₂ + LiBH₄

 $\begin{array}{l} \mbox{Potential Reaction Pathway} \\ \mbox{4LiBH}_4 + 3SiO_2 \rightarrow \mbox{2Li}_2O^*SiO_2 + 4B + Si + 8H_2(g) \\ & \Delta G_{298K} = -\ \mbox{49.286 KJ} \end{array}$

Possible non-reversibility suggested via thermodynamic assessment. DSC shows split peak at 280-300°C suggesting reaction event.

Research Center

United

Technologies

Compatibility Screening – SiO₂ + LiBH₄

After discharge $LiBH_4$ is decomposed but unidentified peaks exist. Conclusion: SiO₂ is reactive with hydride and unsuitable for NFS.

Compatibility Screening – ZrO₂ + LiBH₄

DSC of ZrO_2 + LiBH₄ is similar to LiBH₄, suggesting that ZrO_2 is stable and non-reactive in the presence of this strongly reducing hydride.

Solvated Hydride Incorporation

Solution coating of ceramic (SiO₂ initially) substrate with metal borohydride.

Solution Deposition

BeD-XRD

Analyze air-sensitive materials.

Solvent selection is critical:

- Stability in synthesis and deposition
- Binding to surface is appropriate

 Volatile enough to be removed prior to BH₄ decomposition

Project Summary

Improve reversibility of high capacity hydride candidates by developing advanced NFS chemistries through combined modeling and experimentation.

Modeling

- Simulations show interfacial NFS interactions can alter stability of hydride and discharged products.
- Dopants balance both NFS lattice stability and electronic NFS/hydride interfacial interactions.

Framework and Hydride

- Initial nano-framework structures have been synthesized (ZrO₂, Al₂O₃, SiO₂, TiO₂, Carbon).
- Multiple suitable oxide candidates have been identified. ZrO₂ selected because of low reducibility.
- Compatibility screening reactions with LiBH₄ have been performed.
- UTRC / Albemarle focus on ligand stabilized: NaTi(BH₄)₄*ligand
- Sandia focus on stable borohydride: Ca(BH₄)₂

Future Plans

Atomistic Modeling

- Simulate Ca(BH₄)₂ and NaTi(BH₄)₄*ligand hydride interactions with ZrO₂ NFS.
- Virtually tune doped NFS to balance hydride stability and dehydrogenation.
- Virtually develop doped, functionalized, catalyzed NFS to enhance reversibility.

Framework and Hydride

- Evaluate initial oxide (ZrO₂) aerogel.
- Continue to assess oxide, modified carbon and other alternative framework materials.
- Examine support interactions with selected NaTi(BH₄)₄*ligand and Ca(BH₄)₂.
- Evaluate doped, heterogeneously catalyzed and functionalized nano-frameworks.